Tất cả các giá trị của tham số m để hàm số y=x3+3x2-3mx+1 đồng biến trên (-∞;0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có y ' = - 3 x 2 + 6 x + 3 m . Hàm số nghịch biến trên khoảng (0; +∞) nếu y' ≤ 0 trên khoảng (o; +∞)
Cách 1: Dùng định lí dấu tam thức bậc hai.
Xét phương trình - 3 x 2 + 6 x + 3 m . Ta có Δ' = 9(1 + m)
TH1: Δ' ≤ 0 => m ≤ -1 khi đó, - 3 x 2 + 6 x + 3 m < 0 nên hàm số nghịch biến trên R .
TH2: Δ' > 0 => m > -1; y' = 0 có hai nghiệm phân biệt là x = 1 ±√(1+m) .
Hàm số nghịch biến trên (0; +∞) <=> 1 + √(1+m) ≤ 0, vô lí.
Từ TH1 và TH2, ta có m ≤ -1
Cách 2: Dùng phương pháp biến thiên hàm số.
Ta có y ' = - 3 x 2 + 6 x + 3 m ≤ 0 , ∀x > 0 <=> 3 m ≤ 3 x 2 - 6 x , ∀x > 0
Từ đó suy ra 3 m ≤ m i n ( 3 x 2 - 6 x ) với x > 0
Mà 3 x 2 - 6 x = 3 ( x 2 - 2 x + 1 ) - 3 = 3 ( x - 1 ) 2 - 3 ≥ - 3 ∀ x
Suy ra: m i n ( 3 x 2 – 6 x ) = - 3 khi x= 1
Do đó 3m ≤ -3 hay m ≤ -1.
Chọn đáp án C.
Đáp án B
Có y ' = 3 x 2 + 6 x + m
Hám số đồng biến trên R ⇔ y ' ≥ 0 , ∀ x ∈ R ⇔ � ' = 9 − 3 m ≤ 0 ⇔ m ≥ 3
Ta có y’= 3x2-6x+3m
Yêu cầu bài toán khi y’=0 có hai nghiệm phân biệt x1<x2<2
Chọn D.
\(y'=f\left(x\right)=3x^2+6x-3m\)
Để hàm số đồng biến trên \(\left(-\infty;0\right)\)
- TH1: \(\Delta'\le0\Rightarrow9+9m\le0\Rightarrow m\le-1\)
- TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\S>0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-2>0\\-m>0\end{matrix}\right.\) \(\Rightarrow\) ko có m thỏa mãn
Vậy \(m\le-1\)