K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi độ dài cạnh góc vuông của tam giác là a,ba,b, độ dài cạnh huyền là cc (ĐK: a,b,c∈Z+a,b,c∈Z+;a+b>c;c>a;c>ba+b>c;c>a;c>b)

Theo đề bài:

a2+b2=c2a2+b2=c2 (Định lí Py−ta−goPy−ta−go)

và ab=3.(a+b+c)ab=3.(a+b+c)

⟺2ab=6(a+b+c)⟺2ab=6(a+b+c)

⟺a2+2ab+b2=c2+6(a+b+c)⟺a2+2ab+b2=c2+6(a+b+c)

⟺(a+b)2−6(a+b)+9=c2+6c+9⟺(a+b)2−6(a+b)+9=c2+6c+9

⟺(a+b−3)2=(c+3)2⟺(a+b−3)2=(c+3)2

⟺a+b−3=c+3∨a+b−3=−3−c⟺a+b−3=c+3∨a+b−3=−3−c

⟺a+b=c+6∨a+b=−c⟺a+b=c+6∨a+b=−c (TH sau vô lí vì a+b>0>−ca+b>0>−c)

⟺a+b=c+6⟺a+b=c+6.

⟺6a+6b=6c+36⟺6a+6b=6c+36 (1)(1)

Vì a2+b2=c2a2+b2=c2

⟺(a+b)2−2ab=c2⟺(a+b)2−2ab=c2

⟺(c+6)2−2ab=c2⟺(c+6)2−2ab=c2

⟺c2+12c+36−2ab=c2⟺c2+12c+36−2ab=c2

⟺12c+36=2ab⟺12c+36=2ab

⟺6c+18=ab⟺6c+18=ab (2)(2)

Từ (1),(2)(1),(2) →6a+6b−ab=6c+36−6c−18→6a+6b−ab=6c+36−6c−18

⟺ab−6a−6b+18=0⟺ab−6a−6b+18=0

⟺(a−6)(b−6)=18⟺(a−6)(b−6)=18

Giả sử a≥ba≥b

Giải phương trình tích trên được (a;b)=(24;7);(12;9);(15;8)(a;b)=(24;7);(12;9);(15;8)

Tìm được (a;b;c)=(24;7;25);(12;9;15);(15;8;17)

gọi \(z,y,z\text{ là các cạnh của tam giác vuông ,ta có}\)

\(x^2+y^2=z^2\left(1\right)\)

\(xy=2\left(x+y+z\right)\left(2\right)\)

\(\text{Từ (1) ta có:}\)

\(z^2=\left(z+y\right)^2-2xy=\left(x+y\right)^2-4\left(x+y+z\right)\Rightarrow\left(x+y\right)^2-4\left(x+y\right)+4=z^2-4z+4\)

\(\Rightarrow\left(x+y-2\right)^2=\left(z+2\right)^2\)

\(\Rightarrow x+y-2=z+2\left(x+y\ge2\right)\)

Thay z=x+y−4vào (2) ta được :

\(\left(x-4\right)\left(y-4\right)=8\)

\(\Leftrightarrow x-4=1;y-4=8\)hoặc  \(x-4=2;y-4=4\)

\(\Leftrightarrow x=5;y=12\)hoặc   \(x=6;y=8\)

20 tháng 2 2018

Gọi số đo 3 cạnh của tam giác đó là a,b,c ( c là cạnh huyền)

Theo bài ra ta có \(\hept{\begin{cases}c^2=a^2+b^2\\ab=2\left(a+b+c\right)\end{cases}}\)

Ta có 

c2=a2+b2(1)

=> c2=(a+b)2-2ab= (a+b)2-4(a+b+c)

=> c2=a2+b2+2ab-4a-4b-4c

=> c2+4c= a2+b2+2ab-4a-4b

<=> c2+4c+4=a2+b2+2ab-4a-4b+4

<=> (c+2)2=(a+b-2)2

Do a,b,c là số tự nhiên nên 

c+2=a+b-2 <=> c=a+b-4

Thay c=a+b-2 vào (1)  ta được

(a+b-4)2=a2+b2

<=> a2+b2+16-8a-8b+2ab=a2+b2

<=> 2ab-8a-8b=-16

<=> ab-4a-4b=-8

<=> ab-4a-4b+16=8

<=> a(b-4)-4(b-4)=8

<=> (b-4)(a-4)=8

Đến đây lập bảng xét ước là ra

20 tháng 2 2018

tổng 2 số là 16.26 . nếu gấp số thứ nhất lên 5 lần và gấp số thứ 2 lên 2 lần thì tổng mới là 43.2 .tìm 2 số

2 tháng 4 2016

Có hai tam giác vuông có các cạnh (5;12;13) và (6;8;10) thỏa mãn yêu cầu bài toán!

k đúng cho mk nha!

29 tháng 8 2016

gọi 2 cạnh góc vuông lần lượt là a và b(a,b có vai trò như nhau;a,bϵ N)

thì độ dài cạnh huyền là\(\sqrt{a^2+b^2}\)

theo đề bài ta có: \(2.\frac{1}{2}a.b=3\left(a+b+\sqrt{a^2+b^2}\right)\)

→ab-3a-3b=3\(\sqrt{a^2+b^2}\)

\(a^2b^2+9a^2+9b^2-6a^2b-6ab^2+18ab=9a^2+9b^2\)

\(a^2b^2-6a^2b-6ab^2+18ab=0\)

→ab-6a-6b+18=0→(a-6)(b-6)=18=1.18=2.9=3.6(vì a,b>0→a-6;b-6>-6 nên ta loại các giá trị âm)

ta có bảng:

a-6     1                               2                              3

b-6      18                            9                               6

a           7                              8                              9

b           24                              15                         12

thử lại ta có tất cả đều t/m

vậy (a,b)ϵ\(\left\{\left(7,24\right);\left(8,15\right);\left(9,12\right)\right\}\)

 

1 tháng 6 2019

Gọi x; y; z là độ dài ba cạnh tam giác vuông với z là cạnh huyền thì theo đề bài,ta có: 

\(z>y\ge x\ge1\) và

\(\hept{\begin{cases}x^2+y^2=z^2\left(\text{Định lí Pythagoras}\right)\\\frac{xy}{2}=x+y+z\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=z^2\left(1\right)\\xy=2\left(x+y+z\right)\left(2\right)\end{cases}}\)   

Thay (2) lên (1) suy ra \(z^2=\left(x+y\right)^2-4\left(x+y+z\right)\)

\(\Leftrightarrow z^2+4z=\left(x+y\right)^2-4\left(x+y\right)\)

\(\Leftrightarrow z^2+4z+4=\left(x+y\right)^2-4\left(x+y\right)+4\)

\(\Leftrightarrow\left(z+2\right)^2=\left(x+y-2\right)^2\) (*)

Do \(z>y\ge x\ge1\) nên cả hai vế cùng không âm.

Do đó từ (*) suy ra \(z+2=x+y-2\Leftrightarrow z=x+y-4\)

Thay ngược lên (2) và giải tiếp bằng cách phân tích đa thức thành nhân tử và lập bảng xét ước:P.

Note: Em không chắc đâu ạ!