Giải phương trình:
(x^2 + x + 2)^3 + (x + 1)^3 = ( x^2 + 2x + 3)^3
Giúp mình với mai mình nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ thức Vi - ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1}{x_2} = m - 7 \end{array} \right.\)
Theo đề bài, ta có: \({x_1} - {x_2} = 3\)
Từ đó ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1} - {x_2} = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = m + 2\\ {x_2} = m - 1 \end{array} \right.\)
Với giá trị trên, ta có:
\(\begin{array}{l} \left( {m + 2} \right)\left( {m - 1} \right) = m - 7\\ \Leftrightarrow {m^2} + m - 2 = m - 7\\ \Leftrightarrow {m^2} = - 5 \end{array}\)
Vậy không có giá trị $m$ thỏa mãn
x2 - (2m + 1)x + m - 7 = 0
Có: \(\Delta\) = [-(2m + 1)]2 - 4.1.(m - 7) = 4m2 + 4m + 1 - 4m + 28 = 4m2 + 29 > 0
\(\Rightarrow\) x1 = \(\dfrac{2m+1+\sqrt{\Delta}}{2}\); x2 = \(\dfrac{2m+1-\sqrt{\Delta}}{2}\)
Lại có: x1 - x2 = 3
\(\Leftrightarrow\) \(\dfrac{2m+1+\sqrt{\Delta}-2m-1+\sqrt{\Delta}}{2}=3\)
\(\Leftrightarrow\) 2\(\sqrt{\Delta}\) = 6
\(\Leftrightarrow\) \(\sqrt{\Delta}\) = 3
\(\Leftrightarrow\) \(\Delta\) = 9
\(\Leftrightarrow\) 4m2 + 29 = 9
\(\Leftrightarrow\) m2 = -5 (Vô nghiệm)
Vậy không có giá trị m nào thỏa mãn đk
Chúc bn học tốt!
ĐKXĐ: \(x^2-4x+1\ge0\)
\(2x+2+2\sqrt{x^2-4x+1}=6\sqrt{x}\)
\(\Leftrightarrow2x+2-5\sqrt{x}+2\sqrt{x^2-4x+1}-\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{4x^2-17x+4}{2x+2+5\sqrt{x}}+\dfrac{4x^2-17x+4}{2\sqrt{x^2-4x+1}+\sqrt{x}}=0\)
\(\Leftrightarrow\left(4x^2-17x+4\right)\left(\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{2\sqrt{x^2-4x+1}+\sqrt{x}}\right)=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
\(\Leftrightarrow...\)
\(\frac{2}{x-2}-\frac{3}{x+2}=\frac{x+1}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{x^2-4}=0\)
\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x+4-3x+6-x-1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x-9}{\left(x-2\right)\left(x+2\right)}=0\)
=> -2x-9=0
<=> -2x=9
<=> \(x=\frac{-9}{2}\left(tmđk\right)\)
\(a,\left(3x-7\right)\left(x+5\right)=\left(5+x\right)\left(3-2x\right)\)
\(\Leftrightarrow\left(3x-7\right)\left(x+5\right)-\left(x+5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-7-3+2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\5x-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
\(b,\dfrac{-x+3}{2}=\dfrac{x-2}{3}\left(MSC=6\right)\)
Suy ra :
\(3\left(-x+3\right)=2\left(x-2\right)\)
\(\Leftrightarrow-3x+9-2x+4=0\)
\(\Leftrightarrow-5x+13=0\)
\(\Leftrightarrow x=\dfrac{13}{5}\)
\(c,\dfrac{x-1}{x-2}+\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)\(\left(dkxd:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+2\right)+5\left(x-2\right)-12-x^2+4}{x^2-4}=0\)
\(\Leftrightarrow x^2+2x-x-2+5x-10-12-x^2+4=0\)
\(\Leftrightarrow6x-20=0\)
\(\Leftrightarrow x=\dfrac{10}{3}\)\(\left(n\right)\)
Vậy \(S=\left\{\dfrac{10}{3}\right\}\)
a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)
\(\Leftrightarrow3x+2x-10=6-5x+1\)
\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm
b, \(x^3-3x^2-x+3=0\)
\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)
Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }
c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)
\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Vậy ...
đặt \(x^2+x+2\) là a ; đặt \(x+1\)là b
\(\Rightarrow a+b=x^2+x+2+x+1\)\(=x^2+2x+3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3=a^3+3a^2b+3ab^2+b^3\)
\(\Rightarrow3a^2b+3ab^2=0\)\(\Rightarrow3ab\left(a+b\right)=0\)\(\Rightarrow\)\(a=0\)hoặc \(b=0\)hoặc \(a+b=0\)
* nếu a = 0 \(\Rightarrow\) \(x^2+x+2=0\)( vô lí vì luôn dương, cái này dễ chứng minh nha)
* nếu b = 0 \(\Rightarrow x+1=0\Rightarrow x=-1\)
* nếu a + b = 0 \(\Rightarrow x^2+2x+3=0\)(cái này cũng luôn dương nhé)
Vậy phương trình có 1 nghiệm là x = -1
chúc bạn học tốt nha <3
Thanks bạn nhìu