Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
a)đặt tên biểu thức là C . Ta có :
C = 1 + 4 + 42 + 43 + ... + 42012
C = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 42010 + 42011 + 42012 )
C = 21 + 43 . ( 1 + 4 + 42 ) + ... + 42010 . ( 1 + 4 + 42 )
C = 21 + 43 . 21 + ... + 42010 . 21
C = 21 . ( 1 + 43 + ... + 42010 )
=> C chia hết cho 21
b) đặt tên biểu thức là B . Ta có :
B = 1 + 7 + 72 + ... + 7101
B = ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )
B = 8 + 72 . ( 1 + 7 ) + ... + 7100. ( 1 + 7 )
B = 8 + 72 . 8 + ... + 7100 . 8
B = 8 . ( 1 + 72 + ... + 7100 )
=> B chia hết cho 8
tương tự
\(B=4+4^2+4^3+...+4^{20}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{19}+4^{20}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+....+4^{19}.\left(1+4\right)\)
\(=5.\left(4+4^3+...+4^{19}\right)⋮5\)
Vậy B chia hết cho 5
\(C=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{19}+7^{20}\right)\)
\(=7.\left(1+7\right)+7^3.\left(1+7\right)+....+7^{19}.\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{19}.8\)
\(=8.\left(7+7^3+...+7^{19}\right)⋮8\)
Vậy C chia hết cho 8
Có 1 + 7 + 72 + 73 + ... + 7101
=(1 + 7) + (72 + 73) + ... (7100+ 7101)
=(1 + 7) + 72(1 + 7) + ... 7100(1+ 7)
=(1+7)(1+72+..+7100)
=8(1+72+..+7100)
=> 1 + 7 + 72 + 73 + ... + 7101 chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)