Trong một cuộc họp của một công ty, mọi người ngồi xung quanh một chiếc bàn bo tròn. Tuy rằng không có sự bố trí trước nhưng khi ngồi vào bàn thì mỗi người đều ngồi bên cạnh hai người cùng giới tính. Tổng cộng có 15 người nữ. Hỏi trong phòng họp đó có tất cả bao nhiêu người?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Đặt Ω là không gian mẫu. Ta có n Ω = 2 8 = 256 .
Gọi A là biến cố “Không có hai người nào ngồi cạnh nhau phải đứng dậy”.
- TH1: Không có ai tung được mặt ngửa. Trường hợp này có 1 khả năng xảy ra.
- TH2: Chỉ có 1 người tung được mặt ngửa. Trường hợp này có 8 khả năng xảy ra.
- TH3: Có 2 người tung được mặt ngửa nhưng không ngồi cạnh nhau: Có 8.5 2 = 20 khả năng xảy ra (do mỗi người trong vòng tròn thì có 5 người không ngồi cạnh).
- TH4: Có 3 người tung được mặt ngửa nhưng không có 2 người nào trong 3 người này ngồi cạnh nhau. Trường hợp này có C 8 3 − 8 − 8.4 = 16 khả năng xảy ra.
Thật vậy:
+ Có C 8 3 cách chọn 3 người trong số 8 người.
+ Có 8 khả năng cả ba người này ngồi cạnh nhau.
+ Nếu chỉ có 2 người ngồi cạnh nhau. Có 8 cách chọn ra một người, với mỗi cách chọn ra một người có 4 cách chọn ra hai người ngồi cạnh nhau và không ngồi cạnh người đầu tiên (độc giả vẽ hình để rõ hơn). Vậy có 8.4 khả năng.
- TH5: Có 4 người tung được mặt ngửa nhưng không có 2 người nào trong 4 người này ngồi cạnh nhau. Trường hợp này có 2 khả năng xảy ra.
Suy ra
n A = 1 + 8 + 20 + 16 + 2 = 47 ⇒ P A = 47 256
Nếu tất cả các số trên giấy là 21 thì tổng tất cả các số mà 13 người đó viết sẽ là 21 x 13, là 1 số lẻ Nhưng theo cách viết như đề bài thì mỗi con số đeo trên mỗi người sẽ được lặp lại 2 lần, suy ra tổng thu được phải là số chẵn Điều mâu thuẫn này cho ta đpcm !
Nếu tất cả các số trên giấy là 21 thì tổng tất cả các số mà 13 người đó viết sẽ là 21 x 13, là 1 số lẻ
Nhưng theo cách viết như đề bài thì mỗi con số đeo trên mỗi người sẽ được lặp lại 2 lần, suy ra tổng thu được phải là số chẵn
Điều mâu thuẫn này cho ta đpcm !
Bên cạnh mỗi người chỉ có 1 người khác tức là có 2 người ngồi với nhau
Các nhóm 2 học sinh ngồi với nhau tách ra bằng một ghế.
Gọi mỗi nhóm gồm 3 ghế thì có 2 ghế được ngồi và 1 ghế trống
Tổng số nhóm là 60 : 3 = 20 ( nhóm )
Số học sinh có thể ngồi nhiều nhất quanh bàn tròn : 20 x 2 = 40 ( học sinh )