K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

a) Ta có AH = AD và AB \(\perp\)DH nên AB là đường trung trực của đoạn thẳng DH

=> BD = BH => \(\Delta\)DBH cân

Vậy  \(\Delta\)DBH cân (đpcm)

b) D là trung điểm của AC nên AD = \(\frac{1}{2}\)AC

=> AC = 2AD = 2AB = 2.5 = 10 (cm) => AB = 5 (cm)

\(\Delta\)ABC vuông tại A nên AB2 + AC2 = BC2 (theo định lý Pythagoras)

Thay số: 52 + 102 = BC2 => BC2 =125 => BC = \(\sqrt{125}\)

Vậy BC = \(5\sqrt{5}\)cm

c) Cung tròn tâm D có bán kính bằng BC nên BC = DE ( DE là bán kính của đường tròn tâm D)

Từ giả thiết suy ra CD = DA = AH => AC = DH

Xét \(\Delta\)ABC và \(\Delta\)HED có:

     AC = HD (cmt)

    BC = ED (cmt)

Do đó  \(\Delta\)ABC = \(\Delta\)HED ( 2cgv)

=> AB = HE (hai cạnh tương ứng)

Mà AB = AD (cùng bằng nửa AC)

=> AD = HE (đpcm)

d) Dễ thấy \(\Delta\)ABD và \(\Delta\)ABH vuông cân nên ^DBA = ^ABH = 450

=> ^DBH = 900

Dễ chứng minh: ^EHB = ^CDB = 1350

Xét \(\Delta\)CDB và \(\Delta\)EHB có:

   CD = HE (cùng bằng AD)

   ^EHB = ^CDB (cmt)

   BD = BH (câu a)

Do đó ​\(\Delta\)​CDB = \(\Delta\)EHB (c.g.c)

=> BC = BE (hai cạnh tương ứng) (1)

và ^EBH = ^CBD

=> ^DBH = ^DBE + ^EBH = ^DBE + ^CBD = ^EBC = 90(2)

Từ (1) và (2) suy ra BEC vuông cân tại B (đpcm)

a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ

b: ΔÂBC cân tại A

mà AM là trung tuyến

nen AM vuông góc với BC

c: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

=>AC//BD

10 tháng 4 2016

a)

xét tam giác ABK và tam giác DCK có:

KB=KB(gt)

KA=KD(gt)

BKA=DKC(2 góc đđ)

suy ra tam giác ABK=DCK(c.g.c)

suy ra BAK=DCK

suy ra AB//CD

b)

theo câu a, ta có tam giác ABK=DCK(c.g.c0

suy ra AB=DC

ta có: AB//DC mà BAK= 90 độ suy ra DCK=90

xét tam giác ABH và CDH có:

AB=CD(cmt)

HA=HC(gt)

BAH=DCH=90

suy ra tam giác ABH=CDH(c.g.c)

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M sao...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0

a: Xét ΔANM và ΔACB có 

AN/AC=AM/AB

\(\widehat{NAM}=\widehat{CAB}\)

Do đó: ΔANM\(\sim\)ΔACB

Suy ra: \(\widehat{ANM}=\widehat{ACB}\)

hay MN//BC

Xét tứ giác MNBC có MN//BC

nên MNBC là hình thang

mà MB=NC

nên MNBC là hình thang cân

b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

nên ABCD là tứ giác nội tiếp

Xét đường tròn ngoại tiếp tứ giác ABCD có

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

\(\widehat{BDC}\) là góc nội tiếp chắn cung BC

mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)

nên \(\widehat{ADB}=\widehat{CDB}\)

hay DB là tia phân giác của góc ADC

a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ

b: ΔÂBC cân tại A

mà AM là trung tuyến

nen AM vuông góc với BC

c: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

=>AC//BD