Cho tam giác ABC:điểm I nằm trong tam giác.IA,IB,IC lần lượt cắt BC,CA,AB tại M,N,P.Chứng minh:MB/MC*NC/NA*PA/PB=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là định lí ceva, bạn có thể tham khảo thêm các cách chứng minh khác trên mạng nếu cần.
Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau: a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB) Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC) AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC) PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1 b)PO/PC= S(AOP)/ S(APC) MO/MA= S(CMO)/ S(CAM) NO/NB= S(ANO)/ ABN) Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)
Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau:
a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB)
Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC)
AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC)
PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1
b)PO/PC= S(AOP)/ S(APC)
MO/MA= S(CMO)/ S(CAM)
NO/NB= S(ANO)/ ABN)
Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)