cho \(M=x^2+y^2-xy\) và x-y=2
tìm x,y để M đạt giá trị nhỏ nhất, tìm giá trị nhỏ nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16) + 3997
= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997
Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z
Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N
<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024
=> M \(\ge\)2012
vậy Min M = 2012
khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3
Do |x+2| > hoặc =0
|2y-10| > hoặc =0
=>|x+2|+|2y-10| > hoặc =0
=>___________+2012 > hoặc=0+2012=2012
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\)=>\(\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}=>\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right):2=5\end{cases}}\)
Vậy x=-2;y=5 <=> S=2012
\(\text{Bài giải}\)
\(\text{Ta có : }S=\left|x+2\right|+\left|2y-10\right|+2012\)
\(\text{Do }\left|x+2\right|\ge0\)
\(\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|+2012\ge0+2012=2012\)
\(\text{Dấu "}=\text{" xảy ra khi :}\)
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right)\text{ : }2=5\end{cases}}\)
\(\text{Thay }x=-2\text{ , }y=5\text{ ta có : }\)
\(S=\left|-2+2\right|+\left|2\cdot5-10\right|+2012\)
\(S=0+\left|10-10\right|+2012\)
\(S=0+0+2012\)
\(S=2012\)
\(\text{Vậy }GTNN\text{ của }S=2012\text{ khi }x=-2\text{ và }y=5\)
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$
Tìm giá trị của x và y để :
S = x + 2 + 2y –10 + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó .