K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2015

S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)

Kết luận vậy S > 1/2

6 tháng 2 2017

S=1/2

25 tháng 3 2015

B=1/50+1/51+1/52+...+1/99

Ta có: 1/50=1/50

          1/51<1/50

          1/52<1/50

          ..............

          1/99<1/50

1/50+1/51+1/52+...+1/99<1/50+1/50+1/50+...+1/50(50 phân số 1/50)

B<1

Bài này thầy Chung dạy rồi mà

26 tháng 5 2020

mình nhầm , thay 2019 = 2020 nhé

5 tháng 3 2016

Ta có:

\(\frac{1}{51}>\frac{1}{100}\)

\(\frac{1}{52}>\frac{1}{100}\)

...

\(\frac{1}{99}>\frac{1}{100}\)

\(\frac{1}{100}=\frac{1}{100}\)

=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)

Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)

=> S \(>\frac{1}{100}.50\)

=> S \(>\frac{1}{2}\)

Vậy S > 1/2.