K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

sory máy mình ko vẽ đc hình

https://olm.vn/hoi-dap/detail/219225140352.html

bạn xem ở link này (mình gửi cho)

Học tốt!!!!!!!!!!!

25 tháng 1 2020

Đề này lúc trước bọn tui làm chỉ có mỗi câu 3 thôi,câu 1,2 đưa vào để gợi ý làm câu 3 ó.

b

Chắc bác cũng chứng minh được 

\(\Delta GAD=\Delta KCD\left(ch-gn\right)\Rightarrow KC=AG\)

\(\Delta ABG=\Delta CGH\left(ch-gn\right)\Rightarrow AG=CH\)

\(\Rightarrow KC=CH\)

\(\Rightarrow\Delta HEC=\Delta KEC\left(ch-cgv\right)\Rightarrow\widehat{HCE}=\widehat{KCE}\Rightarrow CE\) phân giác

c

Mặt khác do \(\Delta HEC=\Delta KEC\left(ch-cgv\right)\Rightarrow\widehat{KEC}=\widehat{HEC}\)

Ta có:

\(\widehat{KEC}=\widehat{EBC}+\widehat{ECB}\)

\(\widehat{HEC}=\widehat{EAC}+\widehat{ECA}=\widehat{EBA}+\widehat{ECA}\)

Khi đó \(\widehat{EBC}+\widehat{ECB}=\widehat{EBA}+\widehat{ECA}\left(1\right)\)

Do \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}+\widehat{DBC}=\widehat{ECA}+\widehat{ECB}\left(2\right)\)

Cộng vế theo vế của ( 1 );( 2 ) suy ra \(\widehat{EBC}+\widehat{ECB}+\widehat{ABD}+\widehat{DBC}=\widehat{EBA}+\widehat{ECA}+\widehat{ECA}+\widehat{ECB}\)

\(\Rightarrow2\widehat{EBC}=2\widehat{ECA}\Rightarrow\widehat{EBC}=\widehat{ECA}\)

\(\RightarrowĐPCM\)

7 tháng 1 2019

a)  Xét 2 tgiac vuông: tgiac CDK và tgiac ADG có:

CD = AD

góc CDK = ADG

suy ra: tgiac CDK = tgiac ADG (ch_gn)

=>  CK = AG; góc DCK = góc DAG

Xét tgiac KAC và tgiac GCA có:

CK = AG

góc KCA = góc GAC

cạnh AC chung

suy ra: tgiac KAC = tgiac GCA

=> AK = CG

7 tháng 1 2019

Câu mk cần các bạn làm là câu b,c nha

13 tháng 2 2022

 

 

Kẻ AF và CG cùng vuông góc với BD, CH vuông góc với AE.

Xét tam giác ABF và tam giác CAH có:

AFB=CHA=90

AB=CA (vì tam giác abc cân tại A)

ABF=CAH (gt)

=>Tam giác ABF=Tam giác CAH (ch-gn)

=>AF=CH (2 cạnh tương ứng) (1)

Xét tam giác ADF và tam giác CDG có:

AFD=CGD=90

AD=CD (vì D là trung điểm của AC)

ADF=CDG (2 góc đối đỉnh)

=>Tam giác ADF=Tam giác CDG (ch-gn)

=>AF=CG (Hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: CH=CG

Xét tam giác CEH và tam giác CEG có:

CH=CG (cmt)

CHE=CGE=90

EC cạnh chung

=>Tam giác CEH=Tam giác CEG (ch-cgv)

=>CEH=CEG (hai góc tương ứng)

Mà CEH là góc ngoài đỉnh E của tam giác AEC

      CEG là góc ngoài đỉnh E của tam giác BEC

=>CEH=ECA+EAC và CEG=EBC+ECB

=>ECA+EAC=EBC+ECB (vì CEH+CEG cmt)

=>ECA+EBA=EBC+ECB (vì DAE=ABD) (1)

Lại có: Tam giác ABC cân tại A  =>ACB=ABC

=>ECA+ECB=EBC+EBA (2)

Cộng vế theo vế đẳng thức (1) và (2), ta được:

ECA+EBA+ECA+ECB=EBC+ECB+EBC+EBA

=>2ECA+EBA+ECB=2EBC+ECB+EBA

=>2ECA=2EBC

=>ECA=EBC (ĐPCM)

3 tháng 9 2018

a, xét tam giác ADG và tam giác CDK có:

  \(\widehat{ADG}=\widehat{CDK}\)

  AD=CD(D là trung điểm của AC)

  \(\widehat{AGD}=\widehat{CKD}=90^o\)

\(\Rightarrow\)tam giác ADG = tam giác CDK(cạnh huyền - góc nhọn)

\(\Rightarrow\)DG=DK(2 cạnh tương ứng)

xét tam giác ADK và tam giác CDG có

  AD=CD(GT)

\(\widehat{ADK}=\widehat{CDG}\)(đđ)

DK=DG(chứng minh trên)

\(\Rightarrow\)tam giác ADK = tam giác CDG (c.g.c)

\(\Rightarrow\)AK=CG(2 cạnh tương ứng)