Cho tam giác ABC có góc ngoài tỉ lệ với 3,4,5 .Các góc trong tương ứng tỉ lệ với góc nào?
Trình bày rõ ràng nha các bạn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đo các góc ngoài tại 3 đỉnh A,B,C lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/6 và a+b+c=180
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{180}{15}=12\)
Do đó: a=48; b=60; c=72
=>\(\widehat{A}=132^0;\widehat{B}=120^0;\widehat{C}=108^0\)
=>Ba góc trong lần lượt tỉ lệ với 11;10;9
cũng dễ thôi mà
gọi x,y,z(độ),a,b,c(độ) lần lượt là số đo các góc ngoài của tam giác ABC và lần lượt là số đo 3 góc của tam giác ABC
theo đề bài ta có :
x:y:z=4:5:6
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)
lại có x+a=180
y+b=180
z+c=180
cổng 3 vế ta có
=x+a+y+b+z+c
=(x+y+z)+(a+b+c)=540
=>(x+y+z)+180=540
x+y+z=360
áp dụng tính chất của dãy tỉ số bằng nhau ta tìm dc x,y,z lần lượt là 84:60:36
=>a:b:c=84:60:36
a:b:c=7:5:3
xin nhé nếu sai bảo để mình xem lại
Gọi 3 góc A,B,C lần lượt là x,y,z
Theo bài ra ta có:
x/7=y/5=z/3 mà x+y+z=180 độ
=> x/7=y/5=z/3=x+y+z/7+5+3=180/15=12
x=12*7=84
y=12*5=60
z=13*3=39
Gọi góc ngoài tại 3 đỉnh A,B,C là a,b,c
Ta có a=y+z=96 , b=x+z=120 , c=y+x=144
=>ƯCLN(a,b,c)=24
=>a=96/24=4
b=120/24=5
c=144/25=6
Vậy các góc ngoài tam giác ABC tỉ lệ với 4,5,6
Gọi số đo các góc A,B,C lần lượt là a,b,c
Theo đề, ta co: \(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}=\dfrac{180+180+180-a-b-c}{3+4+5}=\dfrac{540-180}{12}=\dfrac{360}{12}=30\)
=>180-a=90; 180-b=120; 180-c=150
=>a=90; b=60; c=30
Gọi số đo các góc trong tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Gọi số đo các góc ngoài tam giác `ABC` lần lượt là `a, b, c (a,b,c \ne 0)`
Các góc ngoài đỉnh `A, B, C` lần lượt tỉ lệ với các số `3:4:5`
Nghĩa là: \(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}=\dfrac{180-a+180-b+180-c}{3+4+5}\)
\(=\dfrac{570-180}{12}=\dfrac{360}{12}=30\)
`->`\(\dfrac{180-x}{3}=\dfrac{180-y}{4}=\dfrac{180-z}{5}=30\)
`-> a=30*3=90, b=30*4=120, c=30*5=150`
`->`\(\left\{{}\begin{matrix}x=180^0-90^0=90^0\\y=180^0-120^0=60^0\\z=180^0-150^0=30^0\end{matrix}\right.\)
Vậy, các góc trong tam giác `ABC` lần lượt là `90^0, 60^0, 30^0.`