Cho \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)và \(M=2y-2y^2+2xy-x^2+2015\)
Tìm gtnn của M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó
Nếu bạn đã học phương trình đặc trưng thì khá dễ, chưa học thì chúng ta đành liên hợp:
ĐKXĐ: \(x;y\ge-2\)
\(\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+\left(x+y\right)^2+\frac{3y^2}{4}\right]=0\)
\(\Leftrightarrow x-y=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=y\)
Vậy \(A=x^2+2x^2-2x^2+2x+10=\left(x+1\right)^2+9\ge9\)
\(\Rightarrow A_{min}=9\) khi \(x=y=-1\)
\(\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2015\)
\(=\sqrt{\left(x^2+y^2-2xy\right)+2\left(x-y\right)+1+4}+2\left(y^2-4y+4\right)+2007\)\(=\sqrt{\left(x-y+1\right)^2+4}+2\left(y-2\right)^2+2007\ge2007\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Đk:\(x\ne-2;y\ne-2\)
Xét \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)
\(\Rightarrow x^3-y^3+\sqrt{x+2}-\sqrt{y+2}=0\)
\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\dfrac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+\dfrac{1}{\sqrt{x+2}+\sqrt{y+2}}\right)\)
Dễ thấy: Với mọi \(x;y\ge-2\) thì \(x^2+xy+y^2+\dfrac{1}{\sqrt{x+2}+\sqrt{y+2}}>0\)
\(\Rightarrow x-y=0\Rightarrow x=y\). Thay vào M có:
\(M=x^2+2x+2018=\left(x+1\right)^2+2017\ge2017\)
Đẳng thức xảy ra khi \(x=y=-1\)
bài này kq đẹp phết =2017 . cách khác xét
f(t) = t^3 +can(t+2) đi nó đồng biến đó :))
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
bài của bọn mk như này cx khá giống của bạn nên bạn có thể tham khảo :
Cho x,y thỏa √x+2+y3=√y+2+y3
Tìm gtnn của B= x2 +2xy-2y2 +2y+10
GIẢI
√x+2+y3=√y+2+y3 => x=y
ta có : B= x2 + 2xy - 2y2 + 2y + 10 <=> B=x2 +2x2 - 2x2 + 2x + 10
B = x2 + 2x +10
B = (x+1)2 + 9 >= 9 vì (x+1)2 >= 0 với ∀ x
=> min B = 9 <=> x=y=1
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
\(\sqrt{x+2}+x^3=y^3+\sqrt{y+2}\)
nếu x>y =>vt>vp
nếu x<y => vt<vp
nếu x=y => VT=VP
=> x=y
ta có\(M=-x^2+2x+2015=-\left(x-1\right)^2+2016\)
=>M max=2016<=>x=y=1