K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(1\right)\)

Xét ΔABC có 

CE là đường phân giác ứng với cạnh AB

nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)

hay DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

Suy ra: EB=DC(3)

Xét ΔEDB có \(\widehat{EBD}=\widehat{EDB}\left(=\widehat{DBC}\right)\)

nên ΔEDB cân tại E

Suy ra: EB=ED(4)

Từ (3) và (4) suy ra EB=ED=DC

31 tháng 10 2016

mi sao ngu thế! middusng là ngu thật

28 tháng 7 2017

đúng là ngu thật dễ thế mà không ra

7 tháng 7 2016

A B C E D

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

30 tháng 7 2016


 

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

14 tháng 9 2016

A B C E D

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

14 tháng 9 2016

Bạn tự vẽ hình nha ==''

ABD = DBC = ABC/2 (BD là tia phân giác của ABC)

ACE = ECB = ACB/2 (CE là tia phân giác của ACB)

mà ABC = ACB (tam giác ABC cân tại A)

=> ABD = ACE

Xét tam giác ABD và tam giác ACE có:

BAC là góc chung

AB = AC

ABD = ACE (chứng minh trên)

=> Tam giác ABD = Tam giác ACE (g.c.g)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE cân tại A

=> AED = 900 - EAD/2

mà ABC = 900 - BAC/2 (tam giác ABC cân tại A)

=> AED = ABC

mà 2 góc này ở vị trí đồng vị

=> ED // BC

=> BEDC là hình thang

mà ABC = ACB (tam giác ABC cân tại A)

=> BEDC là hình thang cân

ED // BC

=> EDB = DBC (2 góc so le trong)

mà DBC = ABD (BD là tia phân giác của ABC)

=> EDB = ABD

=> Tam giác EBD cân tại E

=> EB = ED

=> BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

21 tháng 6 2019

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

- Chứng minh tứ giác BCDE là hình thang cân:

+ ΔABC cân tại A Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

BD là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

CE là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Xét ΔAEC và ΔADB có:

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔAEC = ΔADB

⇒ AE = AD

Vậy tam giác ABC cân tại A có AE = AD

Theo kết quả bài 15a) suy ra BCDE là hình thang cân.

- Chứng minh ED = EB.

ED // BC ⇒ Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc so le trong)

Mà Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDB cân tại E ⇒ ED = EB.

Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên.

Xét ΔABD và ΔACE có

góc BAD chung

AB=AC

góc ABD=góc ACE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔABC có AE/AB=AD/AC

nên ED//BC

Xét tứ giác BEDC có ED//BC

nên BEDC là hình thang

mà BD=CE

nên BEDC là hình thang cân

ED//BC

=>góc EDB=góc DBC

=>góc EDB=góc EBD

=>ED=EB

mà EB=DC

nên EB=ED=DC

1 tháng 8 2023

loading...

\(\Delta\)ABC cân tại A ⇒ \(\widehat{ABC}\) = \(\widehat{ACB}\)   

\(\widehat{ABD}=\widehat{DBC}\) = \(\dfrac{1}{2}\widehat{ABC}\) (vì BD là phân giác của \(\widehat{ABC}\))

\(\widehat{ACE}\) = \(\widehat{ECB}\) = \(\dfrac{1}{2}\)\(\widehat{ACB}\) (vì CE là phân giác của \(\widehat{ACB}\))

⇒ \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\) (1)

Xét \(\Delta\)BCE và  \(\Delta\)CBD có:

\(\widehat{EBC}\) = \(\widehat{BCD}\) (vì tam giác ABC cân tại A)

\(\widehat{ECB}\) = \(\widehat{DBC}\)  theo (1) 

Và BC chung 

\(\Rightarrow\) \(\Delta\)BCE = \(\Delta\) CBD (g-c-g) ⇒ BE = CD (2)

BE + EA = AD + DC (vì \(\Delta\)ABC cân tại A)

⇒ AE = AD \(\Rightarrow\) \(\dfrac{AE}{AB}\) = \(\dfrac{AD}{AC}\) \(\Rightarrow\) ED // BC (3) (định lý talet đảo)

\(\widehat{DBC}\) = \(\widehat{BDE}\) (so le trong)

\(\widehat{EBD}\) = \(\widehat{BDE}\) (vì cùng bằng góc DBC)

⇒ \(\Delta\)BDE cân tại E \(\Rightarrow\) BE = ED (4)

Kết hợp (2); (3); (4) ta có

Tứ giác BECD là hình thang cân có đáy nhỏ bằng cạnh bên. (đpcm)

 

 

 

     

 

 

 

31 tháng 10 2016

8iu9liu84l89iul8ui4

7 tháng 7 2020

E D A B C 1 2 1 2 1

- Chứng minh tứ giác BCDE là hình thang cân:

+ \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

BD là tia phân giác của \(\widehat{B}\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{1}{2}.\widehat{ABC}\)

CE là tia phân giác của \(\widehat{C}\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{1}{2}.\widehat{ACB}\)

\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)

+) Xét 2 tam giác : AEC và ADB , có :

\(\widehat{A}\)chung

AB = AC

\(\widehat{C_1}=\widehat{B_1}\)

\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)

=> AE = AD ( 2 cạnh tương ứng )

Ta có : AD = AE ( cmt ) nên tam giác ADE cân tại A ( dấu hiệu nhận biết tam giác cân )

\(\Rightarrow\widehat{AED}=\widehat{ADE}\)( tính chất tam giác cân )

Xét tam giác ADE , ta có :

\(\widehat{AED}+\widehat{ADE}+\widehat{A}=180^o\)( định lý tổng 3 góc trong tam giác )

\(\Rightarrow2\widehat{AED}+\widehat{A}=180^o\)

\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Xét tam giác ABC , ta có :

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( định lý tổng 3 góc trong tam giác )

Mà \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow2\widehat{ABC}+\widehat{A}=180^o\)

\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ABC}\), mà hai góc này là hai góc đồng vị nên suy ra DE // BC ( dấu hiệu nhận biết hai đường thẳng song song )

Do đó BEDC là hình thang (dấu hiệu nhận biết hình thang).

Lại có\(\widehat{ABC}=\widehat{ACB}\)  (chứng minh trên)

Nên BEDC là hình thang cân (dấu hiệu nhận biết hình thang cân)

Ta có:

DE // BC => \(\widehat{D_1}=\widehat{B_2}\) (so le trong)

Lại có \(\widehat{B_2}=\widehat{B_1}\) ( cmt ) nên \(\widehat{B_1}=\widehat{D_1}\)

\(\Rightarrow\Delta EBD\) cân tại E (dấu hiệu nhận biết tam giác cân)

=> EB = ED ( tính chất tam giác cân )

Vậy BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.