Ê hoàng giúp tớ với :
tính tổng sau :
\(P=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{\left(4n-3\right)\left(4n+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi đề bài sai thì phải, \(\frac{1}{\left(4n-1\right)\left(4n+1\right)}\) không hề phù hợp với các số hạng đầu tiên
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)
\(=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
Với \(k\in N;k>0\) Ta có :
\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\frac{\left(k+2\right)-k}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\right)\)
Áp dụng ta có :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{n\left(n+1\right)-2}{2n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)(đpcm)
Ta có :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{2\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{n\left(n-1\right)+2\left(n-1\right)}{2n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}=\frac{n^2-n+2n-2}{2n^2+2n}\)
\(\Leftrightarrow\)\(\frac{n\left(n+1\right)}{2n\left(n+1\right)}-\frac{2}{2n\left(n+1\right)}=\frac{n^2+n-2}{2n^2+2n}\)
\(\Leftrightarrow\)\(\frac{n^2+n-2}{2n^2+2n}=\frac{n^2+n-2}{2n^2+2n}\) với \(n\ge2\)
Vậy ...
Thôi được rồi .
Giải:
\(P=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{\left(4n-3\right)\left(4n+1\right)}\)
\(\Rightarrow4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{\left(4n-3\right)\left(4n+1\right)}\)
\(=\frac{5-1}{1.5}+\frac{9-5}{5.9}+...+\frac{\left(4n+1\right)-\left(4n-3\right)}{\left(4n-3\right)\left(4n+1\right)}\)
\(=\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+...+\frac{1}{4n-3}-\frac{1}{4n+1}\)
\(=1-\frac{1}{4n+1}=\frac{4n}{4n+1}\)
Vậy \(A=\frac{4n}{4n+1}\)
cảm ơn nha