Cho tam giác ABC (AB<AC). Từ trung điểm D của cạnh BC kẻ một đường thẳng vuông góc với tia phân giác của góc BAC, đường thẳng đó cắt các tia AB và AC theo thứ tự ở M và N. Chứng minh rằng:
a)Tam giác AMN là tam giác cân
b)BM=CN
c)AD<\(\frac{AB+AC}{2}\)
Hình bn tự vẽ nha!!^^
a, Xét \(\Delta ADM\)VÀ \(\Delta ADN\)có:'
\(\widehat{MAD}=\widehat{DAN}\)(tia p/g \(\widehat{BAN}\))
\(AD\)chung
\(\widehat{ADN}=\widehat{ADM}\)(Đg thg \(\perp\))(=90 độ)
\(\Rightarrow\Delta'ADM=\Delta ADN\left(g.c.g\right)\)
\(\Rightarrow\widehat{M}=\widehat{N}\)(2 góc t/ứ)
Xét tam giác AMN có: \(\widehat{M}=\widehat{N}\Rightarrow\Delta AMN\)là tam giác cân tại A