cho tam giác abc kẻ ah vuông góc với bc tại h.
a.chứng minh ab^2- bh^2= ac^2- hc^2
b.Từ h kẻ he vuông góc ab (e thuộc ab), trên tia he lấy m sao cho em= eh. Chứng minh tam giác ame= tam giác ahe.
c.Chứng minh am vuông góc mb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...
Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC
=>HB=HC
b) Ta có HB+HC=BC
=>HB=HC=BC/2=8/2=4cm
Ap dụng định lí Py-ta-go vào tam giác BAH ta có
AH2+BH2=AB2
AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=>AH=3
C)Xét tam giác vuông BDH và CEH ta có
HB=HC(theo câu a)
Góc B=C(Vì tam giác ABC cân ở A)
=>tam giác BDH=CEH(ch-gn)
=>HD=HE(tương ứng)
Vậy tam giác HDE có HD=HE nên cân ở H
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=) HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=) HD<HC
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=> HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=> HD<HC
sửa đề nha
cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC
b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK
c. CMR : HK // BM
Xét \(\Delta BACvà\Delta MACcó\)
AC:chung
AM=AB(gt)
\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(ΔAHB=ΔAHC)
\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)
nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)
mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)
nên \(\widehat{EHC}=\widehat{FHC}\)
mà tia HC nằm giữa hai tia HE,HF
nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)