Một người đi xe đạp từ A đến B với vận tốc 4 km/h. Lúc về người đó đi với vận tốc 5 km/h nên thời gian về ít hơn thời gian đi là 30 phút. Tính quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường AB là x(x>0)km
thời gian đi từ A đến B là \(\dfrac{x}{15}\)h
thời gian về từ B về A là \(\dfrac{x}{12}h\)
vì thời gian về lâu hơn thời gian đi là 30p =\(\dfrac{1}{2}\)h nên ta có pt
\(\dfrac{x}{12}\)-\(\dfrac{x}{15}\)=\(\dfrac{1}{2}\)
giải pt x=30 TM
vậy quãng đường AB dài 30 km
Gọi quãng đường AB là x (km, x>0)
Người đó đi xe đạp từ A đến B với vận tốc 15km/h
\(\to\) Thời gian lúc đi của người đó là \(\dfrac{x}{15}\) (h)
Người đó đi xe đạp từ B về A với vận tốc 12km/h
\(\to\) Thời gian lúc về của người đó là \(\dfrac{x}{12}\) (h)
Vì thời gian về nhiểu hơn thời gian đi là 30 phút
\(\to\) Ta có pt: \(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{30}{60}\)
\(\to 5x-4x=30\)
\(\to x=30\) (TM)
Vậy quãng đường AB là 30km
Đổi : 30p = 1/2 giờ
Gọi độ dài quãng đường AB là x km (x > 0)
Ta có phương trình :
x/15 - x/18 = 1/2
<=> 6x - 5x/90 = 1/2
<=> x/90 = 1/2
<=> x = 45
<=> x/18 = 2,5
Vậy chiều dài quãng đường AB là 45 km
thời gian đi từ B về A là 2,5 giờ
đổi 12 phút = 0,2 giờ
gọi độ dài quãng đường AB là: x (đơn vị:km,x>0)
=> thời gian mà xe máy đi từ A đến B là: `x/35` (giờ)
=> thời gian mà xe máy đi từ B đến A là: `x/40` (giờ)
vì thời gian về ít hơn thời gian đi 12 phút nên ta có phương trình sau
\(\dfrac{x}{35}-\dfrac{x}{40}=0,2\\ < =>x\cdot\left(\dfrac{1}{35}-\dfrac{1}{40}\right)=0,2\\ < =>x\cdot\dfrac{1}{280}=0,2\\ < =>x=56\left(tm\right)\)
vậy độ dài quãng đường AB là 56km
\(12p=0,2h\)
Gọi \(x\left(km\right)\) là quãng đường AB \(\left(x>0\right)\)
Theo bài, ta có pt :
\(\dfrac{x}{35}=\dfrac{x}{40}+0,2\)
\(\Leftrightarrow\dfrac{x}{35}-\dfrac{x}{40}-0,2=0\)
\(\Leftrightarrow\dfrac{40x-35x-280}{1400}=0\)
\(\Leftrightarrow5x=280\)
\(\Leftrightarrow x=56\left(tmdk\right)\)
Vậy quãng đường AB dài 56km
30 phút = (1/2) giờ
Gọi quãng đường AB là x (km). Điều kiện x > 0.
Thời gian xe máy đi từ A đến B là x/30 (giờ).
Thời gian xe máy đi từ B về A là x/24 (giờ).
Ta có phương trình:
⇔ 5x - 4x = 60 ⇔ x = 60 (thỏa mãn điều kiện)
Vậy quãng đường AB là 60 km.
Bạn tách ra nhá
Thôi, mình làm câu 1:
Vì thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
V xuôi/V ngược = T ngược/T xuôi = 40/30 = 4/3
Ta có sơ đồ:
T xuôi: |-----|-----|-----| 30 phút
T ngược:|-----|-----|-----|-----|
T xuôi là:
30 : (4 - 3) x 3 = 90 phút = 1,5 giờ
Quãng đường là:
1,5 x 40 = 60km
Đ/s:..
Vì quãng đường AB không đổi nên ta có :Đổi: \(45ph=\dfrac{3}{4}h\)
Gọi thời gian người đó đi từ A đến B là x (h) (x > 0)
Thời gian người đó từ B về A là
\(x-\dfrac{3}{4}\left(h\right)\)
Quãng đường người đó đi từ A đến B là 30x (km)
Quãng đường người đó đi từ A đến B là:
\(40.\left(x-\dfrac{3}{4}\right)=40x-30\left(km\right)\)
Vì quãng đường AB không đổi nên ta có :\(40x-30=30x\Leftrightarrow10x=30\Leftrightarrow x=3\left(h\right)\)Độ dài quãng đường AB là:
\(30.3=90\left(km\right)\)gọi độ dài quãng đường AB là x(km)(x>0)
độ dài quãng đường khác là x+15(km)
thời gian đi là: \(\frac{x}{30}\left(h\right)\)
thời gian về là:\(\frac{x+15}{40}\left(h\right)\)
theo đề bài: thời gian về ít hơn thời gian đi là 20 phút\(=\frac{1}{3}h\) nên ta có PT
\(\frac{x}{30}-\frac{x+15}{40}=\frac{1}{3}\)
\(\Leftrightarrow\frac{4x}{120}-\frac{3\left(x+15\right)}{120}=\frac{40}{120}\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=95\left(tmđk\right)\)
vậy đọ dài quãng đường AB là 95 km
Đổi: 20 phút = 1/3 h Gọi quãng đường AB là x (km) (x>0) Thời gian lúc đi là: x/30 (h) QĐ lúc về là: x + 15 (km) Thời gian lúc về là: (x + 15)/40 (h) Vì thời gian về ít hơn thời gian đi 20 phút nên ta có PT: x/30 - (x+15)/40 = 1/3 => ( x - 45)/120 = 1/3 => x - 45 = 40 => x = 85 (km) Vậy quãng đường AB dài 85 km
Gọi độ dài quãng đường AB là x(km), (x>0)
khi đó: thời gian khi đi từ A đến B là\(\)x/4(h)
thời gian đi từ B về A là x/5 (h)
do thời gian lúc về ít hơn thời gian đi là 30' tức 1/2 h nên ta có phương trình x/5 -x/4 =1/2
Đổi 30 phút = 1/2giờ
Gọi vận tốc của xe đạp khi đi từ A đến B là x (km/h, x>0 ). Thời gian xe đi từ A đến B là 24/x (giờ).
Đi từ B về A, người đó đi với vận tốc x + 4 (km/h). Thời gian xe đi từ B về A là 24/x+4 (giờ) Do thời gian về ít hơn thời gian đi là 30 phút nên ta có phương trình:
\(\frac{24}{x}-\frac{24}{x+4}=\frac{1}{2}\). Giải phương trình:
\(\frac{24}{x}-\frac{24}{x+4}=\frac{1}{2}\Leftrightarrow x^2+4x-192=0\Leftrightarrow\orbr{\begin{cases}x=12\\x=-16\end{cases}}\)
Đối chiếu với điều kiện ta có vận tốc của xe đạp đi từ A đến B là 12km/h.