K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

Vẽ Hình Đi

6 tháng 10 2023

 Kéo dài tia AO và đặt là Ax. Khi đó:

\(\widehat{BOC}=\widehat{BOx}+\widehat{COx}\)

 Xét tam giác OAB có \(\widehat{BOx}\) là góc ngoài tại O nên 

\(\widehat{BOx}=\widehat{A_1}+\widehat{ABO}\) (1)

 Tương tự, ta có \(\widehat{COx}=\widehat{A_2}+\widehat{ACO}\) (2)

 Cộng theo vế (1) và (2), ta được:

 \(\widehat{BOC}=\widehat{A_1}+\widehat{A_2}+\widehat{ABO}+\widehat{ACO}\)

        \(=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)

 Ta có đpcm.

6 tháng 3 2019

A B C O 1 2 1 2 1 1

a) (thay vô y như toán đại í )

t.g OBC có: O1^+B1^+C1^=180 độ => O1^=180 độ - B^1-C1^

t.g ABC có: A1^+B2^+B^1+C^2+C1^=180 độ

=> A1^+B^2+C^2=180 độ - B^1-C^1=O1^

=> BOC^=BAC^+ABO^+ACO^

b) B2^+C2^=90 độ - A1^:2 

=> B2^+C^2= 90 độ - (180 độ  - B1^ - B2^ - C1^ - C2^):2

=> B2^+C2^= 90 độ - 90 độ +(B1^+B2^+C2^+C1^):2

=> B2^+C2^=B2+(C1^+C2^):2 ( vì BO là tia p.g của ABC^)

=> C2^=(C1^+C2^):2 => CO là tia p/g của ACB^

6 tháng 3 2019

có mấy cái t vt: B^1 tức là góc B1 đó, vt nhầm :((

5 tháng 2 2022

B A C 80 I ? 10 30

Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)

=> góc BAI = 50o - 10o = 40o 

góc BCI = 50o - 30o = 20o

=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)

\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)

17 tháng 12 2021

a) Nối A và D lại, ta đc: ΔABD & ΔADC

Ta có: D là trung điểm BC => BD=DC

Xét ΔABD & ΔADC có:

AB=AC(gt) ; BD=DC ; AD=AD

=> ΔADB = ΔADC

17 tháng 12 2021

1a. Xét △ABD và △ACD có:

\(AB=BC\left(gt\right)\)

\(\hat{BAD}=\hat{CAD}\left(gt\right)\)

\(AD\) chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).

 

2a. Xét △ABD và △EBD có:

\(AB=BE\left(gt\right)\)

\(\hat{ABD}=\hat{EBD}\left(gt\right)\)

\(BD\) chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
 

c/ Xét △ABI và △EBI có:

\(AB=BE\left(gt\right)\)

\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)

\(BI\) chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)

\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)

Vậy: \(BD\perp AE\)