Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC ( H thuộc BC). Tia phân giác ^HAC cắt BC tại D. Lấy điểm E trên cạnh AB sao cho BE=BH. Chứng minh rằng: EH // AD
Giúp mik với
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
12 tháng 2 2021
sai: tia p/giác của góc HAC cắt AC tại D -> sửa AC thành BC
tự viết gt, kl
CM: Ta có: BE = BH (gt) => t/giác BEH cân tại B => \(\widehat{H_2}=\frac{180^0-\widehat{B}}{2}\)
Do đó: \(\widehat{H_1}=90^0-\widehat{H_2}=90^0-\frac{180^0-\widehat{B}}{2}=\frac{180-180^0+\widehat{B}}{2}=\frac{\widehat{B}}{2}\)(1)
Mặt khác : \(\widehat{HAC}=\widehat{B}\)(vì cùng phụ với \(\widehat{A_2}\))
Vì AD là p/giác của \(\widehat{HAC}\)
=> \(\widehat{A_1}=\widehat{A_3}=\frac{\widehat{HAC}}{2}=\frac{\widehat{B}}{2}\)(2)
Từ (1) và (2) => \(\widehat{A_1}=\widehat{H_1}\)
Mà 2 góc này ở vị trí so le trong
=> EH // AD