Kết quả của phép tính (viết phân số tối giản): 1/2x3 + 1/3x4 + 1/4x5 +…. + 1/9x10 là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{999}-\frac{1}{1000}+1\)
\(\frac{1}{1}-\frac{1}{1000}+1\)
\(\frac{999}{1000}+1\)
\(\frac{1999}{1000}\)
(1/1x2+1/2x3+1/3x4+....+1/999x1000)+1
=(1/1-1/2+1/2-1/3+1/3-1/4+....+1/999-1/1000)+1
=(1/1-1/1000)+1
=999/1000+1
=1999/1000
Ta có:
1/(1x2) + 1/(2x3) + 1/(3x4) + 1/(999x1000) + 1
= 1 - 1/2 + 1/2-1/3 + 1/3-1/4 + ...+ 1/999 - 1/1000 + 1
= 1 - 1/1000 + 1
= 2 - 1/1000
= 1999/1000
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\)
\(=\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{10}{9.10}-\frac{9}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
1/1x2+1/2x3+1/3x4+..+1/9x10
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5+...-1/10
=1-1/10
=9/10
1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/ 6x7 + 1/7x8 + 1/8x9 + 1/9x10
= 2/5
bạn theo công thức nay nè
\(\frac{n}{a\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\)là giải đc thôi
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{9x10}\) \(=\) \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)
1/2.3+1/3.4+...+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
=1/2-1/10=2/5
Ta có : \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\)
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+............+1/9+1/10
=1-1/10
=10/10-1/10
=9/10
Bài làm:
\(\frac{1}{1\times2}+\frac{1}{2\times3}\)\(+\frac{1}{3\times4}+\frac{1}{4\times5}\)\(+...\frac{1}{9\times10}\)
\(=\frac{1}{1}-\frac{1}{2}\)\(+\frac{1}{2}-\frac{1}{3}\)\(+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}\)\(-\frac{1}{5}\)\(+...\frac{1}{9}-\frac{1}{10}\)
\(=\)\(\frac{1}{1}-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\)
\(=\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+\frac{5}{4.5}-\frac{4}{4.5}+...+\frac{10}{9.10}-\frac{9}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}\)
\(=\frac{2}{5}\)