Cmr pt \(x^2-2mx+2010.2011=0\) không có nghiệm nguyên với mọi m thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Ta có : đenta' = (-m)2 - (m+1)(m-1)
= m2-(m2-1)
=m2-m2 +1
=1 >0
==> phương trình luôn có 2 nghiệm phân biệt với mọi m khác 1
\(\text{Δ}=\left(2m\right)^2-4\left(-m+3\right)\)
\(=4m^2+4m-12\)
\(=4\left(m^2+m-3\right)\)
=>Đề sai rồi bạn
1.a
ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)
= m^2-m^2+1=1>0
vậy pt luôn có 2 no vs mọi m
a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)
Vậy pt luôn có 2 nghiệm với mọi m
b)
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)
vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)
c)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)
\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)
\(x^2-2mx+3m-2=0\)
Thay m = -1 vào PT ta được:
\(x^2-2\left(-1\right)x+3\left(-1\right)-2=0\)
\(\Rightarrow x^2+2x-5=0\)
\(\Delta'=b'^2-ac=1^2-1.\left(-5\right)=6>0\)
Do \(\Delta'>0\Rightarrow\)PT có hai nghiệm phân biệt:
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-1+\sqrt{6}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=-1-\sqrt{6}\)
Theo định lý Vi - et, ta có:
Giả sử phương trình đó có nghiệm nguyên.
- Vì $m \in Z$ nên từ (1), suy ra: $x_1$ và $x_2$ cùng chẵn hoặc cùng lẻ. (Nói đúng hơn là cùng có dạng 2k hoặc 2k + 1).
- Mặt khác: $x_1.x_2 = 2010.2011$ nên suy ra, hai nghiệm này cùng chẵn.
Vì vậy: $x_1.x_2 $ $\vdots$ $4$. Mà $2011.2010$ $\not \vdots$ $4$.
Vậy, điều giả sử là sai. Tức là phương trình ban đầu không có nghiệm nguyên.