cho 1 số tự nhiên a sao 5a và a có tổng các chữ số như nhau.cmr a chia hết 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a và 5a có tổng chữ số như nhau
=> a và 5a có cùng số dư khi chia cho 9
=> 5a - a chia hết cho 9
=> 4a chia hết cho 9
=> a chia hết cho 9 (đpcm)
Vì a và 5a có tổng các chữ số bằng nhau
=> 5a - a chia hết cho 9.
=> 4a chia hết cho 9
=> a chia hết cho 9 (ƯCLN(4; 9) = 1) (ĐPCM)
Vì a và 6a có tổng các chữ số bằng nhau nên 6a và a có cùng số dư khi chia cho 9
=> 6a - a chia hết cho 9
=> 5a chia hết cho 9
=> a chia hết cho 9 ( Vì ƯCLN ( 5;9) = 1 ) ( ĐPCM )
2-
Ta có:
a+5b chia hết cho 7
=>10.(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7
=>49b chia hết cho 7 (đúng)
Vì vậy 10a+b chia hết cho 7
CM điều ngược lại đúng
Ta có:
10a+b chia hết cho 7
=>5.(10a+b) chia hết cho 7
=>50a+5b chia hết cho 7
Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7
=>49a chia hết cho 7 (đúng)
Vậy điều ngược lại đúng
Ta thu gọn được biểu thức:
a = 6a
=> a - 6a = 6a - 6a (trừ 2 vế đi)
=> -5a = 0
=> a = 0
Mà 0 chia hết cho 9
Vậy nếu a và 6a như nhau thì a chia hết cho 9
Vì a và 6a có tổng các chữ số như nhau nên a và 6a có cùng số dư khi chia cho 9
=> 6a -a chia hết cho 9
=> 5a chia hết cho 9
=> a chia hết cho 9 (Vì ƯCLN (4;9)=1)
a và 6a có tổng các chữ số như nhau
=> a và 6a chia 9 cùng có 1 số dư
=> 6a - a \(⋮\)9
=> 5a \(⋮\) 9
Mà ta có :
ƯCLN ( 5;9 ) = 1 ( Vì 2 số này nguyên tố cùng nhau )
Từ đó
=> a \(⋮\)9
=> Đpcm
vì a và 5a có tổng các chữ số bằng nhau nên 5a và a có cùng số dư khi chia cho 9
=>5a - a chia hết cho 9
=> 4a chia hết cho 9
=> a chia hết cho 9 vì ƯCLN (4,9)=1(ĐPCM)
Vì a và 5a có cùng số dư khi chia cho 9 nên ta có:
5a - a chia hết cho 9
=> 4a chia hết cho 9.
=> a chia hết cho 9. (ƯCLN(4; 9) = 1) (ĐPCM)