cho tam giác ABC vuông tại A . Kẻ AH vuông góc vs BC (H thuộc BC) . Tia phân giác của góc HAC cắt BC tại D. CMR: tam giác ABD là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^0-\widehat{BAD}\)
\(\widehat{HAD}=90^0-\widehat{BDA}\)
Mà \(\widehat{CAD}=\widehat{HAD}\) (vì AD là tia phân giác của góc HAC)
Do đó: \(\widehat{BAD}=\widehat{BDA}\Rightarrow\Delta ABD\) cân tại B
Chúc bạn học tốt.
ta có \(\widehat{ADB}=\widehat{DAC}+\widehat{DCA}=\widehat{DAH}+\widehat{HAB}=\widehat{DAB}\)
vì vậy tam giác ABD cân tại B
Ta có Góc BDA + Góc HAD = 90 độ ( 1 )
Lại có Góc BAD + Góc DAC = 90 độ ( 2 )
Mà AD là tia phân giác của góc HAC
->Góc HAD = Góc DAC ( 3 )
Từ ( 1 ) ( 2 ) ( 3 )
->Góc BAD = Góc BDA
Xét tam giác ABD có
Góc BAD = Góc BDA
-> Tam giác ABD là tâm giác cân tại B
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)
\(\widehat{BAD}+\widehat{KAD}=90^0\)
mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
nên \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔABD cân tại B(Định lí đảo của tam giác cân)
c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
chị tự kẻ hình :
AH _|_ BC (gt) => góc DHA = 90o (đn)
=> góc ADH + góc DHA + góc DAH = 180 (đl)
=> góc ADH + 90 + góc DAH = 180
=> góc ADH = 180 - 90 - góc DAH
=> góc ADH = 90 - góc DAH (1)
có tam giác ABC vuông tại A (gt)
=> góc DAB + góc CAD = 90
=> góc DAB = 90 - góc CAD (2)
AD là phân giác của góc HAC (gt) => góc CAD = góc DAH (đn) (3)
(1)(2)(3) => góc DAB = góc ADB
=> tam giác ABD cân tại B (dh)