a,b nguyên dương và 1<a,b<40 sao cho: (C1): y=1/a^x +1/b, (C2): y=1/b^x +1/a có đúng 2 điểm chung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d là ước dương của a và b suy ra: \(\hept{\begin{cases}a=d.a^'\\b=d.b^'\end{cases}}\)
có \(\frac{a+1}{b}+\frac{b+1}{a}\)nguyên dương suy ra \(\frac{a^2+b^2+a+b}{ab}\)nguyên dương\(\Rightarrow a^2+b^2+a+b\)chia hết cho a.b
có \(a.b=d.a^'.d.b^'=a^'.b^'d^2\Rightarrow a^2+b^2+a+b\)chia hết cho \(d^2\)
ta có: \(a^2+b^2+a+b=d^2.\left(a^'\right)^2+d^2\left(b^'\right)^2+d.a^'+d.b^'\)
\(=d\left(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'\right)\)chia hết cho \(d^2\)
suy ra \(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'=d\left(a^'+b^'\right)+a^'+b^'\)chia hết cho d \(\Rightarrow a^'+b^'\)chia hết cho d.\(\Rightarrow a^'+b^'\ge d\Leftrightarrow d.a^'+d.b^'\ge d^2\Leftrightarrow a+b\ge d^2\Leftrightarrow d\le\sqrt{a+b}\)
Đáp án là C. Ta có a,b∈N* không suy ra a -1, b -1∈N* . Do vậy không áp dụng được giả thiết quy nạp cho cặp {a -1, b -1}.
Chú ý: nêu bài toán trên đúng thì ta suy ra mọi số tự nhiên đều bằng nhau. Điều này là vô lí.
Cosi: ab <= 1/4
Quy đồng P, ta đc:
P = (2ab+1)/(ab+2).
Ta cm P <= 2/3
<=> 3(2ab+1) <= 2(ab+2)
<=> ab<= 1/4 (đúng)
Vậy maxP = 2/3 khi a=b =1/2
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
diiiiiiiiiiiiiiiiiiiioaaaaaaaaaâkjfàokàokáafdá
gdfh
dgh
d
hgsdf
sdf
gsdg
sdg
s
dg
dsg
gs
s
dg
s
dsdgsđsgsd
0
0