Giai phuong trinh:
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
GIUP MINH VOI MAI MINH HOC ROI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+10}{2000}+\frac{x+20}{1990}+\frac{x+30}{1980}+\frac{x+40}{1970}=-4\)
\(\Leftrightarrow\frac{x+10}{2000}+1+\frac{x+20}{1990}+1+\frac{x+30}{1980}+1+\frac{x+40}{1970}+1=0\)
\(\Leftrightarrow\frac{x+2010}{2000}+\frac{x+2010}{1990}+\frac{x+2010}{1980}+\frac{x+2010}{1970}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}\right)=0\)
Vì \(\frac{1}{2000}+\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}>0\)
\(\Rightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
\(\Leftrightarrow\frac{x+10}{2000}+1+\frac{x+20}{1990}+1+\frac{x+30}{1980}+1+\frac{x+40}{1970}+1=0\)
\(\Leftrightarrow\frac{x+2010}{2000}+\frac{x+2010}{1990}+\frac{x+2010}{1980}+\frac{x+2010}{1970}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}\right)=0\)
mà\(\left(\frac{1}{2000}+\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}\right)\ne0\Rightarrow\left(x+2010\right)=0\\ \Rightarrow x=-2010\)
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
<=> \(\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)
<=> \(\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)
<=> (x - 2004)(1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4) = 0
<=> x - 2004 = 0 (vì 1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4 khác 0)
<=> x = 2004
Vậy S = {2004}
đề bài \(=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{4}{2000}+\frac{x}{2001}-\frac{3}{2001}+\frac{x}{2002}-\frac{2}{2002}=\frac{x}{2}-\frac{2002}{2}+\frac{x}{3}-\frac{2001\\}{3}+\frac{x}{4}-\frac{2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{1}{500}+\frac{x}{2001}-\frac{1}{667}+\frac{x}{2002}-\frac{1}{1001}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}+1001+667+500=0\)
\(\Leftrightarrow\left(\frac{x}{2000}+\frac{x}{2001}+\frac{x}{2002}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}\right)+\left(1001+667+500-\frac{1}{500}-\frac{1}{667}-\frac{1}{1001}\right)=0\)
=> x=1
\(\frac{2}{\left(x+3\right)\left(x+1\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}-\frac{2}{x+3}+\frac{2}{x+3}-\frac{2}{x+5}+\frac{2}{x+5}-\frac{2}{x+7}=\frac{2}{9}\)
\(\frac{2}{x+1}-\frac{2}{x+7}=\frac{2}{9}\\ \Rightarrow\frac{2x+14-2x-2}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\\ \Rightarrow\frac{12}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}=\frac{12}{54}\)
\(\Rightarrow\left(x+1\right)\left(x+7\right)=54\\ \Rightarrow x^2+8x-54=0\Rightarrow x=-4\pm\sqrt{70}\)
\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}=4\)
\(\Leftrightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)+\left(\frac{x+3}{2003}-1\right)=4-4=0\)
\(\Leftrightarrow\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}+\frac{x-2000}{2003}=0\)
\(\Leftrightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x-2000=0\) ( do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\ne0\) )
\(\Leftrightarrow x=2000\)
Vậy x = 2000
Đây là cách của lớp 7 nha
@@ Học tốt
\(\frac{x}{2000}\)- 1+\(\frac{x+1}{2001}\)-1+\(\frac{x+2}{2002}\)-1+\(\frac{x+3}{2003}\)-1=0
<=>\(\frac{x-2000}{2000}\)+ \(\frac{x-2000}{2001}\)+ \(\frac{x-2000}{2002}\)+ \(\frac{x-2000}{2003}\)=0
<=>\(\left(x-2000\right)\)\(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)=0
Do \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)khác 0
=> \(x-2000=0\)<=> \(x=2000\)
Bạn chuyển về 1 vế sau đó trừ 1 vào mỗi phân thức ta được :
\(\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
Vì biểu thức bên phải khác 0 nên : \(x-2005=0\)=> \(x=2005\)
\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)
\(\Leftrightarrow\frac{x-2005}{2000}+\frac{x-2005}{2001}+\frac{x-2005}{2002}=\frac{x-2005}{2003}+\frac{x-2005}{2004}+\frac{x-2005}{2005}\)
\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
<=> x - 2005 = 0
<=> x = 2005
Vậy ...............
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
\(\Rightarrow\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)\(\Rightarrow\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)
\(\Rightarrow\left(x-2004\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\right)=\left(x-2004\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
Với \(x-2004\ne0\)
\(\Rightarrow\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\left(KTM\right)\)
Với \(x-2004=0\)
\(\Rightarrow x=2004\)