K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Số có 4 chữ số có dạng

Số phần tử của không gian mẫu: n(S)=9.9.8.7=4536.

Gọi A: “ tập hợp các số tự nhiên có 4 chữ số phân biệt và lớn hơn 2500.”

TH1: a>2

Chọn a: có 7 cách chọn.

Chọn b: có 9 cách chọn.

Chọn c: có 8 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có:7.9.8.7=3528 .

 

TH2: a=3; b>5

Chọn a: có 1 cách chọn.

Chọn b: có 4 cách chọn.

Chọn c: có 8cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.4.8.7=224  (số).

 

TH3: a=2; b=5; c>0

Chọn a: có 1 cách chọn.

Chọn b: có1  cách chọn.

Chọn c: có 7 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.1.7.7=49(số).

 

TH4. a=2; b=5; c=0 ;d>0

Chọn a: có 1 cách chọn.

Chọn b: có 1 cách chọn.

Chọn  c: có 1 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.1.1.7=7(số).

Như vậy: n(A)=3528+224+49+7=3808

Chọn C.

3 tháng 5 2016

Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được

Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5

Theo đề bài ta có

Xét 4 số a1;a2;a3;a4

a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay  a1.a3=a2.a4)  (1)

Xét 4 số a1;a2;a3;a5

a1.a5=a2.a3            (2)

Từ (1) và (2) suy ra a4=a5(không thỏa mãn)

Suy ra chỉ có 4 số khác nhau trong đó  

Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng

2 tháng 8 2015

Ta chứng minh trong 2005 số tự nhiên đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau. Thực vậy, giả sử trong các số đã cho có nhiều hơn 4 số khác nhau, giả sử a1, a2, a3, a4, a5 là 5 số khác nhau.
Không mất tính tổng quát

Mình chỉ nói sơ thôi mong bạn hiểu cho mình

27 tháng 9 2020

1) Số lớn nhất : 20000 , số nhỏ nhất : 10001

2) Đáp số : 999995 .

27 tháng 9 2020

Giúp mk vs mk đg cần gấp làm nhanh mk cho link

3 tháng 8 2023

\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .

Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)

            Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)

\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)

   Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\) 

Vì n thuộc N nên tổng của A là : một số chính phương . 

\(c)\) Ta có : Số hạng của dãy số B là : n

     Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)

\(=n.\left(n+1\right)\) 

Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 . 

Ta thấy chúng đều không thoả mãn .

vậy.............

            

3 tháng 8 2023

Bạn xem lại câu A+B mới là số chính phương k?