2016-(2026+2017)+(-2015+2017)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q
Ta có : \(A=\left(\left(-2015\right)^{2016}.-2016^{2017}+\left(-2016\right)^{2017}.-2015^{2016}\right).\left(-2017\right)^{2018}\)
\(=\left(2015^{2016}.-2016^{2017}-2016^{2017}.-2015^{2016}\right).2017^{2018}\)
\(=\left(2015^{2016}-2015^{2016}\right).2017^{2018}.\left(-2016^{2017}\right)\)
\(=0.2017^{2018}.\left(-2016^{2017}\right)=0\)
Giải:
\(A=\left[\left(-2015\right)^{2016}.\left(-2016^{2017}\right)+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\)
\(A=\left[2015^{2016}.\left(-2016\right)^{2017}+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\)
\(A=\left[2015^{2016}+\left(-2015^{2016}\right)\right].\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\)
\(A=0.\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\)
\(A=0\)
2016-(2026+2017)+(-2015+2017)
= 2016-2026-2017-2015+2017
= 2016-2015-2026
=1-2026
=-2025
2016 - ( 2026 + 2017 ) + ( -2015 + 2017 )
= 2016 - 2026 - 2017 - 2015 + 2017
= ( 2016 - 2026 ) - ( 2017 - 2017 ) - 2015
= -10 - 2015
= -2025