B=1+4+42+...+417,.CMr B chia hết cho 105
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
- \(3^3=27\equiv1\left(mod13\right)\Rightarrow\left(3^3\right)^{35}=3^{105}\equiv1\left(mod13\right)\)
\(4^3=64\equiv-1\left(mod13\right)\Rightarrow\left(4^3\right)^{35}=4^{105}\equiv-1\left(mod13\right)\)
Vậy \(A=3^{105}+4^{105}\equiv1+\left(-1\right)\left(mod13\right)\) hay \(A⋮13\left(1\right)\)
- \(4^3\equiv-2\left(mod11\right)\Rightarrow\left(4^3\right)^5=4^{15}\equiv\left(-2\right)^5\left(mod11\right)\) hay \(4^{15}\equiv1\left(mod11\right)\)
\(3^5=243\equiv1\left(mod11\right)\Rightarrow\left(3^5\right)^{21}=3^{105}\equiv1\left(mod11\right)\)
Vậy \(A=3^{105}+4^{105}\equiv1+1\left(mod11\right)\) hay \(A=3^{105}+4^{105}\equiv2\left(mod11\right)\)
=> A không chia hết cho 11 (2)
Từ (1) và (2) => đcpm
Chứng minh chia hết cho 13:
\(A=3^{105}+4^{105}\\ A=\left(3^3\right)^{35}+\left(4^3\right)^{35}\\ A=27^{35}+64^{35}\\ A=\left(27+64\right)\left(27^{34}-27^{33}.35+.......+35^{34}\right)\)
\(A=91\left(27^{34}-27^{33}.35+........+35^{34}\right)\)
\(A=13.7\left(27^{34}-27^{33}.35+........+35^{34}\right)\) chia hết cho 13
Chứng minh không chia hết cho 11
\(3^{105}=243^{21}=\left(242+1\right)^{21}=242^{21}+2.242+1^{21}=242^{21}+2.242+1\)
Vì \(242\) chia hết cho 11 nên \(242^{21}+2.242+1\) chia 11 dư 1
\(4^{105}=1024^{21}=\left(1023+1\right)^{21}=1023^{21}+2.1023+1\)
Vì \(1023\) chia hết cho 11 nên \(1023^{21}+2.1023+1\) chia 11 dư 1
Vậy tổng \(A=3^{105}+4^{105}\) chia 11 dư 2 \(\left(1+1\right)\)
Vậy A không chia hết cho 11 (2)
Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)
Áp dụng ta đc :
a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)
b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)
Bài 1 :
chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42
ta thấy 42 = 2 x 3 x 7
A chia hết 42 suy ra A phải chia hết cho 2;3;7
mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2 (1)
số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )
suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )
A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3
A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3
suy ra A chia hết cho 3 ( 2 )
ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )
suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )
A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )
A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7
A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7
suy ra A chia hết cho 7 (3)
từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7
suy ra A chia hết cho 42 ( điều phải chứng minh )
a)A=1+4+4/\2+.........+4/\11
=(1+4+4/\2)+.....+(4/\9+4/\10+4/\11)
=21+..............+4/\9.(1+4+4/\2)
=21+..+4/\9.21
=(1+4/\3+....+4/\9).21chia hết cho 21