1,Tim cac so nguyen x va y sao cho (x-2)(y-1) =5.
2,Tim so nguyen n sao cho n+5 chia het cho 2n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.n—3 chia hết cho n—1
==> n—1–2 chia hết chi n—1
Vì n—1 chia hết cho n—1
Nên 2 chia hết cho n—1
==> n—1 € Ư(2)
n—1 € {1;—1;2;—2}
Ta có:
TH1: n—1=1
n=1+1
n=2
TH2: n—1=—1
n=—1+1
n=0
TH3: n—1=2
n=2+1
n=3
TH 4: n—1=—2
n=—2+1
n=—1
Vậy n€{2;0;3;—1}
Nếu bạn chưa học số âm thì không cần viết đâu
bài 1:x.y=-15 => x=3;y=-5
x=-3;y=5
x=5;y=-3
x=-5;y=3
x=-1;y=15
x=1;y=-15
Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong
BÀi 2:
ta có:
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)
Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)
ta có bảng sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
\(n\in\left\{-1;0;2;3\right\}\)
Chào bạn,bây giờ mình sẽ giúp bạn câu này
2n-3:n+1
2n-3=2.n+2.1-5-2.(n+1)-5
Để 2n-3 chia hết cho n+1 thì 2.(n+1)-5: n+1
mà 2.(n+1) chia hết cho n+1 suy ra 5:n+1
=>n+1 thuộc Ư(5)
=>n+1 thuộc (-5;-1;1;5)
n thuộc (-6;-2;0;4)
Vì mình cũng chơi pokiwar nên mình giúp bạn câu này,chọn mình nha.Dấu hai chấm là kí hiệu chia hết vì mình không viết đc ba dấu chấm nên phải kí hiệu là hai chấm
Ta có : 2n - 3 chia hết cho n + 1
<=> 2n + 2 - 5 chia hết n + 1
<=> 2.(n + 1) - 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {-1;-5;5;1}
Ta có bảng:
n + 1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
suy ra : n.[n+1]-[n+1]-4 chia hết n+1
suy ra -4 chia hết n+1
suy ra n+1 thuộc ước của -4
tự giải tiếp
nha
n + 5 chia hết cho 2n - 1
=> 2 ( n + 5 ) chia hết cho 2n - 1
=> 2n + 10 chia hết cho 2n - 1
2n - 1 + 11 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 11 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư( 11 )
=> 2n - 1 thuộc { - 1 ; 1 ; 11 ; - 11 }
=> 2n thuộc { 0 ; 2 ; 12 ; - 10 }
=> n thuộc { 0 ; 1 ; 6 ; - 5 }
\(\left(x-2\right)\left(y-1\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp :