Cho tam giác ABC cân tại A , có AH là đường cao ( AH vuông góc với BC tại H .Chứng minh:
a) AH là tia phân giác của góc A
b) AH là đường trung tuyến ( H là trung điểm của BC )
c) AH là đường trung trực cùa BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Xét.\Delta ABH.và.\Delta ACH.có:\\ AB=AC\left(vì.\Delta ABC.cân\right)\\ \stackrel\frown{B}=\widehat{C}\\ AH.chung\\ Vậy.\Delta ABH.=\Delta ACH\left(c.g.c\right)\\\Rightarrow\widehat{BAH}=\widehat{CAH}\left(2.góc.tương.ứng\right)\\ BH=HC\left(2.cạnh.tương.ứng\right)\)
\(b,Ta.có:AH\perp BC\left(giả.thiết\right)\\ HB=HC\left(chứng.minh.trên\right)\\ \Rightarrow AH.là.đường.trung.trực\)
a: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC
b: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
góc EAH=góc DAH
=>ΔAEH=ΔADH
=>AE=AD và HE=HD
=>AH là trung trực của DE
a:Ta có: ΔABC cân tại A
mà AH là đường trung trực
nên AH là phân giác của góc BAC
b: Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chung
\(\widehat{MAI}=\widehat{NAI}\)
Do đó: ΔAMI=ΔANI
Suy ra: AM=AN; IM=IN
=>AI là đường trung trực của MN
=>AH là trung trực của MN
=>HM=HN
hay ΔHMN cân tại H
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH