K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

http://123link.vip/VNybjKzt

2 tháng 2 2019

\(A=\left|-x+8\right|-21\)

Vì \(\left|-x+8\right|\le0\forall x\)

\(A=\left|-x+8\right|-21\ge21\)

\(\Rightarrow A_{max}=-21\)khi \(\left|-x+8\right|=0\Rightarrow-x+8=0\Rightarrow-x=-8\Rightarrow x=8\)

Vậy với Amin = -21 khi x = 8

24 tháng 2 2020

a,Ta có |-x+8| > 0 V x =>A > -21 V x

*Dấu = xảy ra khi -8+x=0 =>x=8

Vậy Amin= -21 khi x = 8

b, Ta có: -3(3x-12)2  0 V x =>D < -37 V x

*Dấu = xảy ra khi 3x-12=0 =>x=4

Vậy Dmax = -37 khi x=4

Vì |2x+50| \(\ge\) 0

     -3|2x+50| \(\le\) 0

\(\Rightarrow\)-21-3|2x+50|\(\ge\)-21

Dấu "=" xảy ra khi: -3|2x+50|=0

                               |2x+50|  =0

                                2x+50 = 0

                                2x       = -50

                                  x      = -50:2

                                  x      = -25

Vậy GTLN của B=-21 khi x=-25

3 tháng 2 2019

a, Ta có: \(|-n+8|\ge0\forall n\)

\(\Rightarrow|-n+8|-21\ge-21\forall n\)

Hay: \(A\ge-21\forall n\)

Vậy: Min A = -21 tại \(|-n+8|=0\) \(\Rightarrow n=8\)

b,Ta có: \(-3|2x+50|\le0\forall x\)

\(\Rightarrow-21-3|2x+50|\le-21\forall x\)

Hay: \(B\le-21\forall x\)

Vậy: Max B =-21 tại \(-3|2x+50|=0\) \(\Rightarrow x=-25\)

=.= hk tốt!!

25 tháng 7 2021

a) ta có : \(|-x+8|\ge0\)

=> \(|-x+8|-21\ge-21\)

=> A \(\ge-21\)

Vậy A đạt GTNN là -21 khi x=8

b) ta có :\(|-x-17|+|y-36|\ge0\)

=> \(|-x-17|+|y-36|+12\ge0+12\)

=> B \(\ge12\)

Vậy B đạt GTNN là 12 khi x=-17 và y =36

c) ta có: \(-|2x-8|\le0\)

=> \(-|2x-8|-35\le0-35\)

=>  C \(\le-35\)

Vậy C đạt GTLN là -35 khi 2x-8=0==> x=4

d) ta có : \(3.\left(3x-12\right)^2\ge0\)

=> \(3.\left(3x-12\right)^2-35\ge0-35\)

=>  \(D\ge-35\)

Vậy D  đạt GTNN là -35 khi x =4

e) ta có : \(-3.|2x+50|\le0\)

=>: \(-21-3.|2x+50|\le0-21\)

=> E \(\le-21\)

vậy E đạt GTLN là -21 khi x=-25

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

6 tháng 12 2019

\(C=x^2-4x+8\)

\(C=x^2-4x+4+4\)

\(C=\left(x-4\right)^2+4\ge4\)

Dấu bằng xảy ra 

\(\Leftrightarrow x-4=0\)

\(\Leftrightarrow x=4\)

Vậy Min A = 4 <=> x= 4

6 tháng 12 2019

giải lun câu này dùm ik: D= x- x^2+ 3. Tìm GTNN hoặc GTLN

13 tháng 7 2015

D=2x2+4x-21

=2x2+4x+2-23

=2.(x2+2x+1)-23

=2.(x+1)2-23

ta có 2.(x+1)2\(\ge\)0

nên 2.(x+1)2-23\(\ge\)-23

Dấu "=" xảy ra khi:

x+1=0

x=-1

vậy GTNN của D là -23 tại x=-1

31 tháng 8 2021

Ta có : (x + 7)6 \(\ge0\forall x\)

=> A = (x + 7)6 - 21 \(\ge-21\)

Dấu "=" xảy ra <=> x + 7 = 0

=> x =- 7

Vạy Min A = -21 <=> x = -7

b) Ta có -4(8 - x)8 \(\le0\)

=> 26 - 4(8 - x)8 \(\le26\)

Dấu "=" xảy ra <=> 8 - x = 0 

<=> x = 8

Vậy Max B = 26 <=> x = 8

B=y^2-y+1

=y^2-2*y*1/2+1/4+3/4

=(y-1/2)^2+3/4>=3/4

Dấu = xảy ra khi y=1/2

E=-x^2+x+2

=-(x^2-x-2)

=-(x^2-x+1/4-9/4)

=-(x-1/2)^2+9/4<=9/4

Dấu = xảy ra khi x=1/2