K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Ta có : \(b=\frac{a+c}{2}\) \(\implies\) \(2b=a+c\)

         \(\frac{2}{c}=\frac{1}{b}+\frac{1}{d}\) 

\(\implies\)  \(\frac{1}{2}.\frac{2}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(\implies\)  \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(\iff\)  \(\frac{1}{c}=\frac{b+d}{2db}\)

        \(2db=c.\left(b+d\right)\)

  \(\left(a+c\right)d=cd+cb\)

     \(ad+cd=cd+cb\)

                 \(ad=cb\)

                 \(\frac{a}{c}=\frac{b}{d}\) là một tỉ lệ thức \(\left(đpcm\right)\)

17 tháng 11 2018

o duoi la bai 2 nha moi nguoi

17 tháng 11 2018

heart

16 tháng 2 2016

0123456789876543210

29 tháng 3 2016

a(a+1)(a+2) a thuộc Z

(2a+1)^2 + (2a-1)^2 a thuộc Z

(3a+1)/(3b+2) a,b thuộc Z

(a+b)^n

27 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)