Tìm số tự nhiên có 2 chữ số , biết rằng nếu nhân nó với 735 thì ta được 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phải tìm là n, ta có: 135n = \(a^2\) (a thuộc N) hay \(3^2.5.n=a^2\)
Số chính phương chỉ chứa các số nguyên tố mũ chẵn nên n = 3.5.\(k^2\) (k thuộc N)
Với k = 1 thì n = 15, k = 2 thì n = 60 với k \(\ge\)3 thì n \(\ge\)135(có nhiều hơn hai chữ số, loại)
Vậy số phải tìm là 15 hoặc 60
Gioi sô phai tìm là n,ta có 135n=a2 (a thuoc N) hay 33.5.k2 (k thuoc N) voi k=1 thì n=15,voi k=2 thi n=60,vây sô phai tìm là 15 hoăc 60
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Theo bài ra ta có:
$\overline{ab}\times 45=\overline{ab}\times 5\times 3^2$
Để $\overline{ab}\times 45$ là scp thì $\overline{ab}$ có dạng $5.m^2$ với $m$ là số tự nhiên
Vì $\overline{ab}$ có 2 chữ số nên:
$10\leq 5m^2\leq 100$
$\Rightarrow 2\leq m^2\leq 20$
$\Rightarrow m^2=4; 9$
$\Rightarrow \overline{ab}=5m^2=5.4=20$ hoặc $\overline{ab}=5.9=45$