cho a;b thuộc z và a ko chia hết cho 3;b ko chia hết cho 3;khi chia a;b cho 3 có cùng số dư.chứng tỏ rằng (a.b-1) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
gọi kết quả khi chia a cho3 là X và số dư là Z \(\rightarrow\)a=3X +Z ( x>z)
gọi kết quả khi chia b cho 3 là Y \(\rightarrow\)b=3y +z (y>z)
\(\Rightarrow\)a.b-1= (3x+z)(3y+z)-1= 9xy +3xz+3yz+z2-1
ta có 9xy chia hết cho 3
3xz chia hết cho 3
3yx chia hết cho 3
-> chỉ cần z2-1 \(⋮\)3 thì ( a.b-1)\(⋮\)3
vì z là số dư nên z\(\in\){1;2}
nếu z=1 thì 12-1 \(⋮\)3
nếu z=2 thì 22\(⋮\)3
vậy với giá trị nào thì z2-1 cũng chia hết cho 3
vậy (a.b-1)\(⋮\)3
k mk nha