Chứng minh rằng:
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\) với n là số nguyên dương; n>2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)
Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)
xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không
S = 1/2 + 1/3 + 1/4 +...... + 1/ n
=> 1/ S = 2 + 3 + 4 +......+n
=> 1 = ( 2+3+4 +......+ n)S
=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n)
vì n thuộc n nên ( 2+3+4+...+ n) sẽ là số nguyên
=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên
Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1
có 2 Th để dấu bằng xảy ra là
2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1
Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n
Th1 không thể xảy ra vì 2=3+4=...+n khác 1
nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số
Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)