Vẽ tam giác ABC có góc A = 90°; AC = 3cm, góc C = 60°. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
a) Chứng minh ΔABD = ΔABC
b) Tam giác BCD là tam giác gì? Vì sao?
c) Tính độ dài các đoạn thẳng BC, AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
TAm giác ABC vuông tại A => ABC + C = 90 độ (1)
TAm giác AHC vuông tại H => HAC + C = 90độ (2)
Từ (1) và (2) => ABC = HAC (3)
Ta có OBA = 1/2 ABC ( BO là phâ n giác ) (4)
Từ (3) và (4) => OBA = 1/2 HAC
OAH = 1/2 HAC ( AO là phân giác)
=>ABO + OAB = 1/2 . HAC + OAH + HAB = 1/2 .HAC + 1/2 .HAC + HAB = HAC + HAB = BAC = 90 độ ( TAm giác ABC vuông tại A )
TAm giác OAB có OBA + OAB = 90 độ => AOB = 90 độ
=> ĐPCM
B A C H O K
Gọi BO giao với AH tại K
Tam giác ABC vuông tại A
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)(1)
Tam giác AHC có \(\widehat{H}=90^o\)
\(\Rightarrow\widehat{HAC}+\widehat{C}=90^o\)(2)
Từ (1) và (2) => \(\widehat{B}=\widehat{HAC}\)
\(\Rightarrow\widehat{HBO}=\widehat{HAO}\)
lại có \(\hept{\begin{cases}\widehat{HBO}+\widehat{BKH}=90^o\\\widehat{HAO}+\widehat{AKO}=\widehat{HBO}+\widehat{BKH}\end{cases}}\)( vì góc BKH và góc AKO bằng nhau 2 góc đối đỉnh )
\(\Rightarrow\widehat{HAO}+\widehat{AKO}=90^o\)
\(\Rightarrow\widehat{AOB}=90^o\)
Xét \(\Delta ACD\)và \(\Delta ABE\)có :
Chung góc A
AC = AE
AD = AB
Vậy \(\Delta ACD=\Delta ABE\)\(\left(c.g.c\right)\)\(\Rightarrow CD=BE\)( hai cặp cạnh tương ứng bằng nhau )
Tớ chỉ biết có vậy thôi ! Hãy nhớ tớ là người đầu tiên làm cho bạn ! NÊN !