Bài 5. (2 điểm)1. Cho các số a, b thoả mãn các điều kiện : 0 ≤ a≤8 và a + b = 11. Tìm giá trị lớn nhất của tích P = ab. Mình cần gấp ạ! giải kĩ , cẩn thận ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left\{{}\begin{matrix}a=5c+1\\b=5d+2\end{matrix}\right.\)
\(a^2+b^2=\left(5c+1\right)^2+\left(5d+2\right)^2\)
\(=25c^2+10c+1+25d^2+20d+4\)
\(=25c^2+25d^2+10c+20d+5\)
\(=5\left(5c^2+5d^2+2c+4d+1\right)⋮5\)
Bài 3:
a: \(4x^2+12x+15=4x^2+12x+9+6=\left(2x+3\right)^2+6>=6\forall x\)
Dấu '=' xảy ra khi x=-3/2
b: \(9x^2-6x+5=9x^2-6x+1+4=\left(3x-1\right)^2+4>=4\forall x\)
Dấu '=' xảy ra khi x=1/3
Đặt \(S=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)
Ta dễ có
\(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{1}{2}\left(a+b\right)\)
Sử dụng phép tương tự khi đó:
\(S\le\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
\(\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=3\)
Đẳng thức xảy ra tại a=b=c=1
a sẽ nhận 20 , b sẽ nhận 36 thì được phân số lớn nhất.kb nha
a)
(x-2)(y+1)=7
=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}
Ta có bảng:
x-2 | -1 | -7 | 1 | 7 |
y+1 | -7 | -1 | 7 | 1 |
x | 1 | -5 | 3 | 9 |
y | -8 | -2 | 6 | 0 |
Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)
b)
3x+8 chia hết cho x-1
<=> 3x-3+11 chia hết cho x-1
<=> 3(x-1)+11 chia hết cho x-1
<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1
=> x-1 \(\in\)Ư(11)={-1,-11,1,11}
<=>x\(\in\){0,-10,2,12}
ta có :
\(P=ab\le\left(\frac{a+b}{2}\right)^2=\frac{121}{4}\)
vậy GTLN của P là \(121\text{ khi }\hept{\begin{cases}a+b=11\\a=b\end{cases}\Leftrightarrow a=b=\frac{11}{2}}\)
mình nhầm đề bài ạ!a\(\le\)3 ạ