K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

trả lời:

\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\frac{\left(x-y\right)^3+z^3+3x^2y-3xy^2+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)

\(=\frac{\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2zx}\)

\(=\frac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)

\(=\frac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-zx\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)

\(=\frac{x-y+x}{2}\)

~hok tốt~

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

18 tháng 12 2018

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng