K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mới lớp 8, chịu

Mà hình như trong pt phân số thứ 2 thiếu bình phương thì phải

31 tháng 1 2019

câu a tự quy đồng cùng  mẫu rồi làm thôi :"))

b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)

\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)

Đặt \(x^2-x=k\), ta có:

\(k.\left(k-2\right)=24\)

\(\Leftrightarrow k^2-2k+1=25\)

\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)

\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)

c)\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)

\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)

p/s: bn tự kết luận nha :))

13 tháng 8 2020

a) \(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)

ĐKXĐ \(x\ne-2,-3,-4\)

=> \(\frac{1}{x+2}+\frac{2}{x+3}-\frac{6}{x+4}=0\)

=> \(\frac{3x+7}{\left(x+2\right)\left(x+3\right)}-\frac{6}{x+4}=0\)

=> \(\frac{\left(3x+7\right)\left(x+4\right)-6\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+4\right)}=0\)

=> (3x + 7)(x + 4) - 6(x2 + 5x + 6) = 0

=> 3x2 + 19x + 28 - 6x2 - 30x - 36 = 0

=> -3x2 - 11x - 8 = 0

=> -3x2 - 3x - 8x - 8 = 0

=> -3x(x + 1) - 8(x + 1) = 0

=> (x + 1)(-3x - 8) = 0

=> \(\orbr{\begin{cases}x=-1\\x=-\frac{8}{3}\end{cases}}\)

Vậy ...

b) Thiếu dữ liệu cuả đề 

c) \(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\)

ĐKXĐ \(x\ne-2;-3\)

=> \(\frac{\left(6x+22\right)\left(x+3\right)-\left(x+2\right)\left(2x+7\right)}{\left(x+2\right)\left(x+3\right)}=\frac{x+4}{\left(x+2\right)\left(x+3\right)}\)

=> \(6x^2+40x+66-x\left(2x+7\right)-2\left(2x+7\right)=x+4\)

=> \(6x^2+40x+66-2x^2-7x-4x-14=x+4\)

=> 4x2 + 29x + 52 = x + 4

=> 4x2 + 29x + 52 - x - 4 = 0

=> 4x2 + 28x + 48 = 0

=> 4(x2 + 7x + 12) = 0

=> x2 + 7x +12 = 0

=> x2 + 3x + 4x + 12 = 0

=> x(x + 3) + 4(x + 3) = 0

=> (x + 3)(x + 4) = 0

=> \(\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\) 

Mà \(x\ne-2,-3\)nên x = -3 loại

Vậy x = -4

NV
26 tháng 10 2019

a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)

\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)

b/

\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)

\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)

\(\Leftrightarrow\left|x+2\right|-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)

c/

\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)

\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

d/ ĐKXĐ: ...

\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)

Đặt \(\frac{\left|x-2\right|}{x-1}=a\)

\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)

e/ ĐKXĐ: ...

Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)

\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)

26 tháng 2 2022

hic, mk chx học

4 tháng 3 2019

a) \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right).\left(x-2\right)}\) Đk : x \(\ne-1\) ; x \(\ne2\)

\(\Leftrightarrow\frac{2.\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}-\frac{1.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=3x-11\)

\(\Leftrightarrow2x-4-x-1=3x-11\)

\(\Leftrightarrow2x-3x-x=-11+4+1\)

\(\Leftrightarrow-2x=-6\)

\(\Leftrightarrow x=3\)

Vậy S = \(\left\{3\right\}\)