K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDC có 

I là trung điểm của đường chéo BC

I là trung điểm của đường chéo AD

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

7 tháng 3 2021

Xét ∆HAF và ∆HCD:

\(\widehat{HFA}=\widehat{HDC}=90^o\)

\(\widehat{AHF}=\widehat{CHD}\) (2 góc đối đỉnh)

=> ∆HAF~∆HCD(g.g)

b) Xét ∆AHB có: M là trung điểm của AH 

                           N là trung điểm của HB

=> MN là đường trung bình của ∆AHB

=>MN//AB và \(MN=\dfrac{1}{2}AB\)

=> \(\widehat{HMN}=\widehat{BAM}\) (2 góc đồng vị)

Tương tự ở ∆AHC ta được: \(MP=\dfrac{1}{2}AC\)  và \(\widehat{HMP}=\widehat{CAM}\)

Ta có: \(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}=\widehat{NMH}+\widehat{PMH}=\widehat{NMP}\)

            \(\dfrac{MN}{MP}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}AC}=\dfrac{AB}{AC}\)

Xét ∆MNP và ∆ABC có:

\(\widehat{NMP}=\widehat{BAC}\left(cmt\right)\)

\(\dfrac{MN}{MP}=\dfrac{AB}{AC}\left(cmt\right)\)

=> ∆MNP~∆ABC

Ta có: \(\dfrac{S_{MNP}}{S_{ABC}}=\left(\dfrac{MN}{AB}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

=> \(S_{MNP}=\dfrac{1}{4}S_{ABC}\)

23 tháng 1 2020

Bạn tự vẽ hình nhé!

a) + b) Xét \(\Delta ADE\)và \(\Delta CFE\)có: 

\(AE=EC\)( E là trung điểm của AC )

\(DE=EF\)( E là trung điểm của DF )

\(\widehat{AED}=\widehat{CEF}\)( 2 góc đối đỉnh )

\(\Rightarrow\Delta ADE=\Delta CFE\left(c.g.c\right)\)

\(\Rightarrow AD=CF\)( 2 cạnh tương ứng )

mà \(AD=DB\)( D là trung điểm của AB )

nên \(DB=CF\)

c) Ta có: \(\widehat{EAD}=\widehat{ECF}\left(\Delta EDA=\Delta EFC\right)\)

mà 2 góc này nằm ở vị trí so le trong

nên \(AD//CF,AB//CF\)

d) Xét \(\Delta BDC\)và \(\Delta FCD\)có: 

\(BD=FC\left(cmt\right)\)

\(\widehat{BDC}=\widehat{FCD}\)( 2 góc so le trong, \(AD//CF\))

CD là cạnh chung

\(\Rightarrow\Delta BDC=\Delta FCD\left(c.g.c\right)\)

\(\Rightarrow\widehat{BCD}=\widehat{FDC}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong

\(\Rightarrow DE//BC\)

Chúc bạn học tốt !!!

23 tháng 1 2020

A B C D E F 1 2 1 1

a, Xét \(\Delta ADE\) và \(\Delta CDE\) có:

\(AE=CE\left(E-là-tr.điểm-của-AC\right)\)

\(\widehat{A1}=\widehat{A2}\left(đ.đỉnh\right)\)

\(DE=FE\left(gt\right)\)

\(\Rightarrow\Delta ADE=\Delta CFE\left(c-g-c\right)\left(1\right)\)

b, Từ \(\left(1\right)\Rightarrow AD=CF\left(2c.t.ứ\right)\left(2\right)\)

Mà: \(AD=BD\left(D-là-tr.điểm-của-AB\right)\left(3\right)\)

Từ \(\left(2\right)\left(3\right)\Rightarrow DB=CF\)

c, Từ \(\left(1\right)\Rightarrow\widehat{A1}=\widehat{C1}\)

Mà 2 góc đang ở vị trí so le trong nên:

\(\Rightarrow AB//CF\)

d, Xét \(\Delta ABC\) có:

\(D\) là trung điểm của \(AB\)

\(E\) là trung điểm của \(AC\)

\(\Rightarrow DE//BC\)

15 tháng 1 2017

A B C D M H K

xét tam giác AMB và tam giác CMD có

AM = MC (gt)

góc AMB = góc CMD ( đối đỉnh )

BM = MD (gt)

do đó tam giác AMB = tam giác CMD (c.g.c)

11 tháng 12 2017

giúp minh câu c nha mình cũng bí bài này

17 tháng 1 2017

A B C M F E G

xét \(\Delta BME\)\(\Delta CMA\)có \(\hept{\begin{cases}BM=MC\left(gt\right)\\\widehat{BME}=\widehat{CMA}\\ME=MA\left(gt\right)\end{cases}}\)(đối đỉnh)

do đó tam giác BME= tam giác CME (c.g.c)

suy ra BE = AC ( 2 cạnh tương ứng )

và \(\Rightarrow\widehat{EBM}=\widehat{ACM}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong suy ra BE//AC

suy ra \(\widehat{BAC}=\widehat{EBA}\)( đồng vị )

xét \(\Delta FBE\)và \(\Delta BAC\)có \(\hept{\begin{cases}FB=BA\left(gt\right)\\\widehat{FBE}=\widehat{BAC}\left(cmt\right)\\BE=AC\left(cmt\right)\end{cases}}\)

do đó \(\Delta FBE=\Delta BAC\left(c.g.c\right)\)

suy ra \(\widehat{BFE}=\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên BC//FE (1)

chứng minh tương tự ta có \(\Delta EMC=\Delta AMB\left(c.g.c\right)\)\(\Rightarrow AB=EC\)( 2 cạnh tương ứng

và \(\widehat{BAC}=\widehat{ECG}\) chứng minh tương tự ta có \(\Delta ACB=\Delta CGE\left(c.g.c\right)\)

suy ra \(\widehat{ACB}=\widehat{CGE}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí đồng vị nên BC//EG (2)

từ (1) và (2) ta cí FE//BC;EG//BC   mà theo tiên đề Ơ-clit thì qua điểm E nằm ngoài đường thẳng BC chỉ có 1 đường thẳng song song vói đường thẳng đó

nên FE trùng EG

hay F;E;G thẳng hàng

5 tháng 12 2018

hình

a) Xét tg MAB và tg MEC có :

M1 = M2 ( đối đỉnh)

BM = MC ( M là trung điểm BC)

MA = ME ( M là trung điểm AE)

=> Tg MAB = Tg MEC (cgc)

=>  góc BAM = góc MEC 

Mà 2 góc này ở vị  trí so le trong => AB // CE

b) góc BAC = 180 - B1 - C1

góc C3 = 180 - C1 - C2

Mà C2 = B1 ( suy từ câu a) 

=> góc BAC =  góc C3                (*)

_ Xét tg ABC và tg CEG có:

góc BAC = C3 (cmt)

AB = CE

AC = CG ( C là trung điểm AG)

=> Tg ABC = tg CEG (cgc)

=> góc C1 = góc CGE

Mà 2 góc này ở vị trí đồng vị => BC // EG                 (1)

_ Xét tg BME và tg CMA có:

góc M3 = góc M4 ( đối đỉnh)

MB = MC (M là trung điểm BC)

ME = AM (M là trung điểm AE)

=> Tg BME = tg CMA (cgc)

=> EB = CA                  (-)

góc B2 = C1

_  góc B3 = 180 - B1 - B2

C3 = 180 - C2 - C1

Mà B1 = C2 ( suy từ câu a)

B2 = C1 (cmt)

=> góc B3 = C3

Mà  góc C3 =  góc BAC (*) => B3 = BAC

_ Xét tg FBE và tg BAC có :

góc B3 = BAC ( CMT)

BF = AB ( B là trung điểm AF)

BỂ = ÁC (-)

=> tg FBE = BAC (cgc)

=> góc BFE = ABC 

Mà 2 góc này ở vị trí đồng vị 

=> BC // FE                                    (2)

_ Theo tiền đề ơ-clit, từ (1) và (2) => EG trùng với FE

=> BC // FG

Hay F, E, G thẳng hàng

                                                                                               -PMM-

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC

5 tháng 1 2019

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC

18 tháng 10 2020

a) T/có : AB = AC (gt)

=> Tam giác ABC cân tại A (đn)

AN = NB = AB/2 (N là trung điểm của AB)

AM = MC = AC/2 (M là trung điểm của AC)

mà AB = AC (tam giác ABC cân tại A)

=> AM = MC = AN = NB 

Xét tam giác ABM và tam giác ACN có:

   AM = AN (cmt)

   A là góc chung

   AB = AC (tam giác ABC cân tại A)

=> Tam giác ABM = Tam giác ACN (c.g.c)

Xét tam giác BNC và tam giác CMB có:

   BN = CN (cmt)

   NBC = MCB (tam giác ABC cân tại A)

   BC là cạnh chung

=> Tam giác BNC = Tam giác CMB (c.g.c)

b) MB = ME (M là trung điểm của BE)

NC = NF (N là trung điểm của CF)

mà MB = NC (tam giác BNC = tam giác CMB)

=> ME = NF

T/có : ANF = BNC (2 góc đối đỉnh)

       AME = CMB (2 góc đối đỉnh)

mà BNC = CMB (tam giác BNC = CMB)

=> ANF = AME

Xét tam giác ANF và tam giác AME có:

   AN = AM (cmt)

   ANF = AME (cmt)

   NF = ME (cmt)

=> Tam giác ANF = tam giác AME (c.g.c)

=> AF = AE (2 cạnh tương ứng)

=> A là trung điểm của FE

c) Vì AM = AN (cmt)

=> Tam giác ANM cân tại A

=> ANM = (180 − NAM) : 2 (1)

Tam giác ABC cân tại A

=> ABC = (180 − BAC) : 2 (2)

Từ (1) và (2) => ANM = ABC 

mà 2 góc này ở vị trí đồng vị

=> MN // BC

Xét tam giác ANF và BNC có:

   AN = NB (N là trung điểm của AB)

   ANF = BNC (2 góc đối đỉnh)

   NF = NC (N là trung điểm của FC)

=> Tam giác ANF = Tam giác BNC (c.g.c)

=> FAN = CBN (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AF // BC

mà MN // BC (cmt)

=> EF // MN // BC (đpcm)

18 tháng 10 2020

A B C M N

Tam giác ABM nào hả :)) ?