Cho \(\Delta ABC\)có M là trung điểm của BC. Vẽ các điểm F; E; D và G sao cho B; M; C thứ tụ là trung điểm của À; AE; AG.
CMR: E; F; G thẳng hàng !?!?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
I là trung điểm của đường chéo BC
I là trung điểm của đường chéo AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Xét ∆HAF và ∆HCD:
\(\widehat{HFA}=\widehat{HDC}=90^o\)
\(\widehat{AHF}=\widehat{CHD}\) (2 góc đối đỉnh)
=> ∆HAF~∆HCD(g.g)
b) Xét ∆AHB có: M là trung điểm của AH
N là trung điểm của HB
=> MN là đường trung bình của ∆AHB
=>MN//AB và \(MN=\dfrac{1}{2}AB\)
=> \(\widehat{HMN}=\widehat{BAM}\) (2 góc đồng vị)
Tương tự ở ∆AHC ta được: \(MP=\dfrac{1}{2}AC\) và \(\widehat{HMP}=\widehat{CAM}\)
Ta có: \(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}=\widehat{NMH}+\widehat{PMH}=\widehat{NMP}\)
\(\dfrac{MN}{MP}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}AC}=\dfrac{AB}{AC}\)
Xét ∆MNP và ∆ABC có:
\(\widehat{NMP}=\widehat{BAC}\left(cmt\right)\)
\(\dfrac{MN}{MP}=\dfrac{AB}{AC}\left(cmt\right)\)
=> ∆MNP~∆ABC
Ta có: \(\dfrac{S_{MNP}}{S_{ABC}}=\left(\dfrac{MN}{AB}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
=> \(S_{MNP}=\dfrac{1}{4}S_{ABC}\)
Bạn tự vẽ hình nhé!
a) + b) Xét \(\Delta ADE\)và \(\Delta CFE\)có:
\(AE=EC\)( E là trung điểm của AC )
\(DE=EF\)( E là trung điểm của DF )
\(\widehat{AED}=\widehat{CEF}\)( 2 góc đối đỉnh )
\(\Rightarrow\Delta ADE=\Delta CFE\left(c.g.c\right)\)
\(\Rightarrow AD=CF\)( 2 cạnh tương ứng )
mà \(AD=DB\)( D là trung điểm của AB )
nên \(DB=CF\)
c) Ta có: \(\widehat{EAD}=\widehat{ECF}\left(\Delta EDA=\Delta EFC\right)\)
mà 2 góc này nằm ở vị trí so le trong
nên \(AD//CF,AB//CF\)
d) Xét \(\Delta BDC\)và \(\Delta FCD\)có:
\(BD=FC\left(cmt\right)\)
\(\widehat{BDC}=\widehat{FCD}\)( 2 góc so le trong, \(AD//CF\))
CD là cạnh chung
\(\Rightarrow\Delta BDC=\Delta FCD\left(c.g.c\right)\)
\(\Rightarrow\widehat{BCD}=\widehat{FDC}\)( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong
\(\Rightarrow DE//BC\)
Chúc bạn học tốt !!!
a, Xét \(\Delta ADE\) và \(\Delta CDE\) có:
\(AE=CE\left(E-là-tr.điểm-của-AC\right)\)
\(\widehat{A1}=\widehat{A2}\left(đ.đỉnh\right)\)
\(DE=FE\left(gt\right)\)
\(\Rightarrow\Delta ADE=\Delta CFE\left(c-g-c\right)\left(1\right)\)
b, Từ \(\left(1\right)\Rightarrow AD=CF\left(2c.t.ứ\right)\left(2\right)\)
Mà: \(AD=BD\left(D-là-tr.điểm-của-AB\right)\left(3\right)\)
Từ \(\left(2\right)\left(3\right)\Rightarrow DB=CF\)
c, Từ \(\left(1\right)\Rightarrow\widehat{A1}=\widehat{C1}\)
Mà 2 góc đang ở vị trí so le trong nên:
\(\Rightarrow AB//CF\)
d, Xét \(\Delta ABC\) có:
\(D\) là trung điểm của \(AB\)
\(E\) là trung điểm của \(AC\)
\(\Rightarrow DE//BC\)
xét tam giác AMB và tam giác CMD có
AM = MC (gt)
góc AMB = góc CMD ( đối đỉnh )
BM = MD (gt)
do đó tam giác AMB = tam giác CMD (c.g.c)
xét \(\Delta BME\)và\(\Delta CMA\)có \(\hept{\begin{cases}BM=MC\left(gt\right)\\\widehat{BME}=\widehat{CMA}\\ME=MA\left(gt\right)\end{cases}}\)(đối đỉnh)
do đó tam giác BME= tam giác CME (c.g.c)
suy ra BE = AC ( 2 cạnh tương ứng )
và \(\Rightarrow\widehat{EBM}=\widehat{ACM}\)( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong suy ra BE//AC
suy ra \(\widehat{BAC}=\widehat{EBA}\)( đồng vị )
xét \(\Delta FBE\)và \(\Delta BAC\)có \(\hept{\begin{cases}FB=BA\left(gt\right)\\\widehat{FBE}=\widehat{BAC}\left(cmt\right)\\BE=AC\left(cmt\right)\end{cases}}\)
do đó \(\Delta FBE=\Delta BAC\left(c.g.c\right)\)
suy ra \(\widehat{BFE}=\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên BC//FE (1)
chứng minh tương tự ta có \(\Delta EMC=\Delta AMB\left(c.g.c\right)\)\(\Rightarrow AB=EC\)( 2 cạnh tương ứng
và \(\widehat{BAC}=\widehat{ECG}\) chứng minh tương tự ta có \(\Delta ACB=\Delta CGE\left(c.g.c\right)\)
suy ra \(\widehat{ACB}=\widehat{CGE}\)( 2 góc tương ứng )
mà 2 góc này ở vị trí đồng vị nên BC//EG (2)
từ (1) và (2) ta cí FE//BC;EG//BC mà theo tiên đề Ơ-clit thì qua điểm E nằm ngoài đường thẳng BC chỉ có 1 đường thẳng song song vói đường thẳng đó
nên FE trùng EG
hay F;E;G thẳng hàng
a) Xét tg MAB và tg MEC có :
M1 = M2 ( đối đỉnh)
BM = MC ( M là trung điểm BC)
MA = ME ( M là trung điểm AE)
=> Tg MAB = Tg MEC (cgc)
=> góc BAM = góc MEC
Mà 2 góc này ở vị trí so le trong => AB // CE
b) góc BAC = 180 - B1 - C1
góc C3 = 180 - C1 - C2
Mà C2 = B1 ( suy từ câu a)
=> góc BAC = góc C3 (*)
_ Xét tg ABC và tg CEG có:
góc BAC = C3 (cmt)
AB = CE
AC = CG ( C là trung điểm AG)
=> Tg ABC = tg CEG (cgc)
=> góc C1 = góc CGE
Mà 2 góc này ở vị trí đồng vị => BC // EG (1)
_ Xét tg BME và tg CMA có:
góc M3 = góc M4 ( đối đỉnh)
MB = MC (M là trung điểm BC)
ME = AM (M là trung điểm AE)
=> Tg BME = tg CMA (cgc)
=> EB = CA (-)
góc B2 = C1
_ góc B3 = 180 - B1 - B2
C3 = 180 - C2 - C1
Mà B1 = C2 ( suy từ câu a)
B2 = C1 (cmt)
=> góc B3 = C3
Mà góc C3 = góc BAC (*) => B3 = BAC
_ Xét tg FBE và tg BAC có :
góc B3 = BAC ( CMT)
BF = AB ( B là trung điểm AF)
BỂ = ÁC (-)
=> tg FBE = BAC (cgc)
=> góc BFE = ABC
Mà 2 góc này ở vị trí đồng vị
=> BC // FE (2)
_ Theo tiền đề ơ-clit, từ (1) và (2) => EG trùng với FE
=> BC // FG
Hay F, E, G thẳng hàng
-PMM-
Xét tam giác AED và tam giác CEF có:
AE = CE (E là trung điểm của AC)
AED = CEF (2 góc đối đỉnh)
ED = EF (E là trung điểm của DF)
=> Tam giác AED = Tam giác CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF
ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF
Xét tam giác BDC và tam giác FCD có:
BD = FC (chứng minh trên)
BDC = FCD (2 góc so le trong, AD // CF)
CD chung
=> Tam giác BDC = Tam giác FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC
BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC
Xét tam giác AED và tam giác CEF có:
AE = CE (E là trung điểm của AC)
AED = CEF (2 góc đối đỉnh)
ED = EF (E là trung điểm của DF)
=> Tam giác AED = Tam giác CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF
ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF
Xét tam giác BDC và tam giác FCD có:
BD = FC (chứng minh trên)
BDC = FCD (2 góc so le trong, AD // CF)
CD chung
=> Tam giác BDC = Tam giác FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC
BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC
a) T/có : AB = AC (gt)
=> Tam giác ABC cân tại A (đn)
AN = NB = AB/2 (N là trung điểm của AB)
AM = MC = AC/2 (M là trung điểm của AC)
mà AB = AC (tam giác ABC cân tại A)
=> AM = MC = AN = NB
Xét tam giác ABM và tam giác ACN có:
AM = AN (cmt)
A là góc chung
AB = AC (tam giác ABC cân tại A)
=> Tam giác ABM = Tam giác ACN (c.g.c)
Xét tam giác BNC và tam giác CMB có:
BN = CN (cmt)
NBC = MCB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)
b) MB = ME (M là trung điểm của BE)
NC = NF (N là trung điểm của CF)
mà MB = NC (tam giác BNC = tam giác CMB)
=> ME = NF
T/có : ANF = BNC (2 góc đối đỉnh)
AME = CMB (2 góc đối đỉnh)
mà BNC = CMB (tam giác BNC = CMB)
=> ANF = AME
Xét tam giác ANF và tam giác AME có:
AN = AM (cmt)
ANF = AME (cmt)
NF = ME (cmt)
=> Tam giác ANF = tam giác AME (c.g.c)
=> AF = AE (2 cạnh tương ứng)
=> A là trung điểm của FE
c) Vì AM = AN (cmt)
=> Tam giác ANM cân tại A
=> ANM = (180 − NAM) : 2 (1)
Tam giác ABC cân tại A
=> ABC = (180 − BAC) : 2 (2)
Từ (1) và (2) => ANM = ABC
mà 2 góc này ở vị trí đồng vị
=> MN // BC
Xét tam giác ANF và BNC có:
AN = NB (N là trung điểm của AB)
ANF = BNC (2 góc đối đỉnh)
NF = NC (N là trung điểm của FC)
=> Tam giác ANF = Tam giác BNC (c.g.c)
=> FAN = CBN (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AF // BC
mà MN // BC (cmt)
=> EF // MN // BC (đpcm)