- C=40+41+42+......+499 Chia hết cho 5
- neu abcd chia hết cho 4 thì cd chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abcd = ab00 + cd
Mà ab00 chia hết cho 4 ; cd chia hết cho 4 nên ab00 + cd chia hết cho 4
Vậy abcd chia hết cho 4 (dpcm)
abcd = ab00 + cd
Mà ab00 chia hết cho 4 nên cd phải chia hết cho 4
Vậy nếu abcd chia hết cho 4 thì cd chia hết cho 4 (dpcm)
dấu hiệu chia hết cho 4 nè :
hai số cuối cùng chia hết cho 4 : ví dụ: 6532 có hai số cuối cùng là 32 chia hết cho 4
\(D=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13+13.3^3+...+13.3^9\Rightarrow D⋮13\)
\(D=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40+40.3^4+40.3^8\Rightarrow D⋮40\)
Biểu thức E làm tương tự, ý đầu ghép 3 số với nhau được nhân tử là 91 chia hết 13, ý sau ghép 4 số được nhân tử 820 chia hết 41
\(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9\left(a-b\right)⋮9\)
\(\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=99\left(a-c\right)⋮99\)
Câu sau bạn ghi đề sai nhé, đề đúng phải là ab+cd chia hết 99
\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)⋮99\Rightarrow\overline{ab}+\overline{cd}⋮99\)
\(\overline{abcd}=100\overline{ab}+\overline{cd}=101\overline{ab}-\overline{ab}+\overline{cd}=101\overline{ab}-\left(\overline{ab}-\overline{cd}\right)\)
Mà \(101\overline{ab}⋮101\Rightarrow\overline{ab}-\overline{cd}⋮101\)
\(\overline{abcdef}=10000\overline{ab}+100\overline{cd}+\overline{ef}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{ef}\right)\)
Do \(9999⋮11\) ; \(99⋮11\); \(\overline{ab}+\overline{cd}+\overline{ef}⋮11\Rightarrow\overline{abcdef}⋮11\)
1 / Ta có : abcd = 100 ab + cd
Vì 100 ab chia hết cho 4 nên để 100 ab + cd chia hết cho 4 thì cd chia hết cho 4
Vậy abcd chia hết cho 4
2 / Ta có : abcd = 100 ab + cd
Vì 100 ab chia hết cho 4 ; cd chia hết cho 4 nên 100 ab + cd chia hét cho 4
Vậy abcd chia hét cho 4
a, vì các số chia hết cho 4 có 2 số tận cùng chia hết cho 4 mà nếu cd chia hết cho 4 thì => abcd chia hết cho 4
( ví dụ số 152 có 2 số tận cùng là 52 mà 52 chia hết cho 4 nên => 152 chia hết cho 4 )
b, tương tự phần a
abcd = 100ab + cd
mà 100ab : hết cho 4 và cd chia hết cho 4
=> abcd : hết cho 4
vì abcd =ab .100 + cd
Nếu cd chia hết cho 4 => abcd =ab .100 + cd chia hết cho 4 vì 100 chia hết cho 4
abcd = 100ab + cd
Vì 100 chia hết cho 4 => 100ab chia hết cho 4.
Mà cd chia hết cho 4 => 100ab + cd chia hết cho 4 hay abcd chia hết cho 4 (ĐPCM)