Bài 1: Với a, b,c là các số nguyên dương . CMR
a)\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
b) \(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Bài 2 :Với a, b, c \(\ge\) 0. CMR
a, \(a +b\ge2\sqrt{ab}\)
b, \(a +b +c\ge3\sqrt{abc}\)
( giải theo toán lớp 7 được không ạ ! 0...0
Bài 1a):
Ta có:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\left(a+b\right).\dfrac{a+b}{ab}=\dfrac{a^2+2ab+b^2}{ab}=\dfrac{a^2+b^2}{ab}+2\)
Lại có: (a - b)2 = a2 - 2ab + b2 \(\ge\) 0
\(\Rightarrow\) a2 + b2 \(\ge\) 2ab
\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}\ge2\)
\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}+2\ge4\)
Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Bài 2a):
Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
Vậy ta có đpcm