Tìm GTLN của -2x^2+5x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)
\(\Rightarrow A\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)
b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)
\(\Rightarrow B\le3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)
với mọi x thì (2x+1/4)4>=0 (lớn hơn hoặc bằng )
A=(2x+1/4)4-1>=-1
để A đạt GTNN thì (2x+1/4)4=0
2x+1/4=0 =>x=-1/8
Ta có:\(2x-2x^2-5=-\left(2x^2-2x+5\right)\)
\(=-\left[2\left(x^2-x+\dfrac{5}{2}\right)\right]\)
\(=-\left\{2\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+\dfrac{5}{2}\right]\right\}\)
\(=-\left\{2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\right\}\)
\(=-\left[2\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{2}\right]\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)
Do \(-2\left(x-\dfrac{1}{2}\right)^2\le0\) với \(\forall x\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\) )
\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\) hay \(2x-2x^2-5\le-\dfrac{9}{2}\) (dấu ''='' xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy giá trị lớn nhất của biểu thức \(2x-2x^2-5\) là \(-\dfrac{9}{2}\) tại \(x=\dfrac{1}{2}\)
A = 2x - 2x2 - 5
=> 2A = -4x2 + 4x - 10
=> 2A = -(4x2 - 4x + 10)
=> 2A = - [(2x)2 - 2.2x + 1] - 9
=> 2A = -(2x - 1)2 -9
Mà: -(2x - 1)2 \(\le\) 0 => -(2x - 1)2 - 9 \(\le\) -9
=> 2A \(\le\) -9
=> A \(\le\) -4,5
Đẳng thức xảy ra khi: -(2x - 1)2 = 0 <=> x = \(\dfrac{1}{2}\)
9x2+6x+25= (3x)2+2.3x.1+1-1+25
= (3x+1)2+24
Vì (3x+1)2 luôn > hoặc = 0
Nên (3x+1)2+24 luôn > hoặc =24
Vậy GTNN của 9x2+6x+25 bằng 24 khi (3x+1)2=0
<=> x= \(\frac{-1}{3}\)
Câu GTLN bạn làm tương tự câu tìm giá trị nhỏ nhất khác nhau một chút là tìm GTLN thì đặt dấu - ra ngoài
A= X2+5X+25/4-37/4 =(X+5/2)2-37/4 >= -37/4
Amin=-37/4
Đạt được khi : X=-5/2
B=-X2+7X+1=-(X2-7X-1)=-(X2+7X+49/4-53/4)=-(X+7/2)2+53/4<=53/4
BMax=53/4
Đạt được khi:X=-7/2
C=2x2+6x=2x2+6x+9/4-9/4=2(x2+3x+9/4)-9/4=2(x+3/2)2-9/4>=-9/4
CMin=-9/4
Đạt được khi:x=-3/2
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)