K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

\(P=\dfrac{4a+6b+2017c}{4a-6b+2017c}=\dfrac{4a+6a+2017a}{4a-6a+2017a}=\dfrac{2027a}{2015a}=\dfrac{2027}{2015}\)

30 tháng 9 2021

Tham khảo:

https://olm.vn/hoi-dap/detail/248147135218.html

22 tháng 3 2018

Nhầm, Tính giá trị nha

26 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=k\Rightarrow k^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{a}=1\Rightarrow k=1\Rightarrow a=b=c\Rightarrow...\)

23 tháng 3 2020

bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!

vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

áp dụng tc dãy tỉ số = nhau

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a=b=c

thay b=a ; c=a 

=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)

đến đây tự làm típ!

26 tháng 10 2021

Tưởng 5 coin '-' 

26 tháng 10 2021

Chứng minh (2016a-2017b)/(2017c+2018d)=(2016c-2017d)/(2017a+2018b) - Nguyễn Minh Hải

7 tháng 10 2017

b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)

8 tháng 10 2017

Chương I : Số hữu tỉ. Số thực

29 tháng 7 2017

Trần Thọ Đạt ông giải dùm đi!Bn ý k bk tag nên tui tag dùm!

29 tháng 7 2017

Trần Thọ Đạt, giải giúp mình

11 tháng 3 2021

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(4a^2+9b^2\right)\left(2^2+2^2\right)\ge\left(2a.1-3b.2\right)^2=\left(4a-6b\right)^2=1\)

\(\Rightarrow4a^2+9b^2\ge\dfrac{1}{8}\).

Đẳng thức xảy ra khi \(a=\dfrac{1}{8};b=\dfrac{-1}{12}\).

12 tháng 3 2018

Ta có:

a/b = c/d => 2018a/2018b = 2018c/2018d = 2018a - 2018c / 2018b- 2018d

a/b = c/d => 2017a/2017b = 2017c/2017d =2017a+ 2017c/ 2017b+ 2017d

=> 2018a-2018c/2018b-2018d = 2017a+2017c/2017b+2017d (=a/b=c/d)

15 tháng 7 2017

cái này chỉ rút rọn được thôi