nếu ta cộng từng hai cạnh của một tam giác thì ba tổng tỉ lệ với 5,6,7. Chứng tỏ rằng tam giác này có 1 đường cao dài gấp hai lần 1 đường cao khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi độ dài các cạnh của tam giác là x,y,z.
Theo bài ra : \(\frac{x+y}{5}=\frac{y+z}{6}=\frac{z+x}{7}=k\)
Suy ra : x + y = 5k ; y + z = 6k ; z x = 7k
2 . ( x + y + z ) = 18k ; x + y + z = 9k .
Từ đó ta được : x = 3k ; y = 2k ; z = 4k
Độ dài các cạnh của tam giác tỉ lệ nghịch với đường cao tương ứng nên từ y = \(\frac{1}{2}z\)
gọi độ dài 3 cạnh là a,b,c; gọi 3 đg cao là n,m,h
ta có tổng từng 2 cạnh tỉ lệ với 5,6,7
=>a+b/5=b+c/6=a+c/7=a+b+c/9 =k (t/c dãy tỉ số bằng nhau)
=>a+b=5k; b+c=6k; a+c=7k; a+b+c=9k
=> c=4k; a=3k; b=2k
ta có a.n=b.m=c.h=>3k.n=2k.m=4k.h
=>3n=2m=4h=>1,5.n=m=2h=>m=2h (dpcm)