( 1 - 2x ) ^4 = 1/128
giúp em ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-2x\right)^4=\dfrac{1}{128}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{\sqrt[4]{2}}{4}\\2x-1=\dfrac{-\sqrt[4]{2}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt[4]{2}+1}{8}\\x=\dfrac{-\sqrt[4]{2}+1}{8}\end{matrix}\right.\)
\(\left(4x-5\right)\left(2x+30\right)-4\left(x+2\right)\left(2x-1\right)+\left(10x+7\right)\)
\(=8x^2+110x-150-8x^2-12x+8+10x+7\)
\(=108x-135\)
\(-4\left(x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=-3\) \(3\)
<=> \(-4\left(x^2-2x+1\right)+4x^2-1=-3\)
<=> \(-4x^2+8x-4+4x^2-1=-3\)
<=> \(8x-5=-3\)
<=> \(8x=2\)
<=> \(x=\frac{1}{4}\)
\(\dfrac{x-3}{3}=4-\dfrac{1-2x}{5}\)
=>5(x-3)=60-3(1-2x)
=>5x-15=60-3+6x
=>5x-15=6x+57
=>6x+57=5x-15
hay x=-72(nhận)
a) \(\dfrac{1}{4}+\dfrac{3}{4}:x=-2\)
\(\dfrac{3}{4}:x=-2-\dfrac{1}{4}=\dfrac{-8}{4}-\dfrac{1}{4}\)
\(\dfrac{3}{4}:x=\dfrac{-9}{4}\)
\(x=\dfrac{3}{4}:\dfrac{-9}{4}=\dfrac{3}{4}.\dfrac{-4}{9}\)
\(x=\dfrac{-1}{3}\)
b) \(\dfrac{3}{4}+2.\left(2x-\dfrac{2}{3}\right)=-2\)
\(2.\left(2x-\dfrac{2}{3}\right)=-2-\dfrac{3}{4}=\dfrac{-8}{4}-\dfrac{3}{4}\)
\(2.\left(2x-\dfrac{2}{3}\right)=\dfrac{-11}{4}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{4}:2=\dfrac{-11}{4}.\dfrac{1}{2}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{8}\)
\(2x=\dfrac{-11}{8}+\dfrac{2}{3}=\dfrac{-33}{24}+\dfrac{16}{24}\)
\(2x=\dfrac{-17}{24}\)
\(x=\dfrac{-17}{24}:2=\dfrac{-17}{24}.\dfrac{1}{2}\)
\(x=\dfrac{-17}{48}\)
c) \(\left(\dfrac{1}{2}+5x\right).\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}+5x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{2}\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)
a, 1/4 + 3/4 : x = -2
3/4 : x = -2 - 1/4
3/4 : x = -9/4
x = 3/4 : -9/4
x = -1/3
\(\left(1-2x\right)^4=\dfrac{1}{128}\)
\(\Leftrightarrow1-2x=\dfrac{\sqrt[4]{2}}{4}\)
\(\Leftrightarrow2x=\dfrac{1-\sqrt[4]{2}}{4}\)
hay \(x=\dfrac{1-\sqrt[4]{2}}{8}\)
giải theo cách toán 7 được ko ạ