K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

\(UCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

\(\Rightarrow\frac{12n+1}{30n+2}\) la phan so toi gian

16 tháng 1 2019

Gọi \(d\inƯC\left(12n+1,30n+2\right)\Rightarrow12n+1⋮d,30n+2⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)và \(2\left(30n+2\right)⋮d\)

\(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

13 tháng 5 2016

gọi d là UCLN(12n+1;30n+2)

ta có:

[5(12n+1)]-[2(30n+2)] chia hết d

=>[60n+5]-[60n+4] chia hết d

=>1 chia hết d

=>d=1

vậy phân số trên tối giản

13 tháng 5 2016

Gọi ƯCLN(12n+1;30n+2)=d

=> 12n+1 chia hết cho d  => 5(12n+1) chia hết cho d

      30n+2 chia hết cho d  => 2(30n+2) chia hết cho d

=> 60n+5 chia hết cho d 

     60n+4 chia hết cho d

=> (60n+5)-(60n+1) chia hết cho d

=> 1 chia hết cho d

=> d=1;-1

Vì Phân số tối giản là phân số có ƯCLN của tử và mẫu là -1 hoặc 1

=> 12n+1/30n+2 là phân số tối giản

Chúc bạn học tốt nhé, Lâm Hà KHánh

27 tháng 2 2015

Gọi d là ƯCLN của tử và mẫu .

=>12n +1 chia hết cho d              60n+5 chia hết cho d

                                      =>

     30n +2chia hết cho d              60n +4 chia hết cho d

=> (60n+5) -(60n+4) chia hết cho d

=>1 chia hết cho d

=> d=1 => điều phải chứng minh (đpcm)

27 tháng 2 2015

DỄ MÀ .. MILKY WAY GIẢI NHÉ ?

1 tháng 4 2018

a)    n=-1

27 tháng 3 2018

Gọi d là UC của (12n+1; 30n+2)

=> \(\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\) <=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

<=> (60n+5)-(60n+4) \(⋮\)d  <=> 1 \(⋮\)d

=> d=1

Như vậy, UCLN của (12n+1; 30n+2) là 1

=> Phân số là tối giản

\(\frac{n+1}{n-2}\)có giá trị nguyên

=> n+1\(⋮\)n-2=> n-2+3\(⋮\)n-2

=> 3\(⋮\)n-2=> n-2\(\in\){1,3,-1,-3}=>n\(\in\){3,5,1,-1}

12 tháng 4 2019

ta có n+1=n-2+3

vì n-2 chia hết n-2 suy ra để n-2+3 chia hết n-2 thì 3 chia hết n-2 

suy ra n-2 thuộc Ư(3) = {1;-1;3;-3}

ta có bảng 

n-2                 1                         3                      -1                     -3

n                      3                      5                         1                      -1

C/L                 C                      C                       C                     C

25 tháng 1 2019

Gọi (12n + 1; 30n + 2) = d

=> 12n + 1 chia hết cho d  

      30n + 2 chia hết cho d

Xét hiệu:  5(12n + 1) - 2(30n + 2)  chia hết cho d

           <=>  60n + 5 - 60n - 4   chia hết cho d

           <=>   1  chia hết cho d

=> d = 1

Vậy (12n + 1)/(30n + 2) là phân số tối giản

18 tháng 5 2020

Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d, ta sẽ chứng minh d = 1.

Ta có : (12n + 1)⋮ d nên 2.(30n + 2)⋮ d hay (60n + 4)⋮ d.

=> [(60n + 5) - (60n + 4)⋮ d.

=> (60n + 5 - 60n - 4)⋮ d.

=> 1⋮ d => d = 1.

Hay 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau.

Vậy : phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản.

2 tháng 2 2016

+Gọi d là ƯCLN(12n+1;30n+2)

+Ta có:   (12n+1)<>d

              (30n+2)<>d

>            5(12n+1)<>d

              2(30n+2)<>D

>              60n+5<>d

                60n+4<>d

>         [(60n+5)-(60n+4)] <>d

>                    1              <>d

>               d  thuộc {1}

Vậy 12n+1 trên 30+2 là phân số tối giản

2 tháng 2 2016

mik moi hoc lop 5

3 tháng 2 2016

Giả sử phân số \(\frac{12n+1}{30n+2}\) không tối giản

Đặt d là ƯCLN(12n+2;30n+2) nghĩa là nếu d=ƯCLN(12n+1;30n+2) thì d>1  (*)

Ta có:(12n+1) chia hết cho d;(30n+2) chia hết cho d

=>5.(12n+1)-2.(30n+2) chia hết cho d

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d ,mâu thuẫn với  (*)

do đó phân số \(\frac{12n+1}{30n+2}\) tối giản

 

 

3 tháng 2 2016

Ta có: \(\frac{12n+1}{30n+2}\Rightarrow\frac{12+1}{30+2}=\frac{13}{32}\) mà \(\frac{13}{32}\) là phân số tối giản

26 tháng 3 2015

Để chứng minh  12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau

Gọi ƯCLN(12n+1,30n+2)=d             (d∈N)

=> 12n+1 chia hết cho d       => 5(12n+1) chia hết cho d       => 60n+5 chia hết cho d

     30n+2 chia hết cho d       => 2(30n+2) chia hết cho d       => 60n+4 chia hết cho d

=>       (60n+5)-(60n+4) chia hết cho d

=>        1 chia hết cho d

=> d∈Ư(1)={1}

=> d=1

=> ƯCLN(12n+1,30n+2)=1

Vậy 12n+1/30n+2 là phân số tối giản

26 tháng 3 2015

Mình có cách giải khác này:

Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d              60n+5 chia hết cho d
                                      =>
     30n +2chia hết cho d              60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)