(7 mũ 2005 cộng 7 mũ 2004) chia 7 mũ 2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{59}\right)⋮3\)
\(B=2+2^2+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
\(\left(\dfrac{2003}{2004}\right)^0-\left(\dfrac{1}{3}\right)^3\div\left(\dfrac{1}{3}\right)^2\)
\(=1-\dfrac{1}{3}\)
\(=\dfrac{2}{3}\)
Ta có:
A= 2+22+23+…+22004
A=2(1+2)+23(1+2)+…+22003(1+2)
Vậy A chia hết cho 3.
A=2(1+2+22) + 24(1+2+22)+…+22002(1+2+22).
Vậy A chia hết cho 7.
A=2(1+2+22+23)+25(1+2+22+23)+…+22001 (1+2+22+23)
Vậy A chia hết cho 15.
Cho f( x ) = x mũ 2005- 2006.x mũ 2004+ 2006.x mũ 2003-....- 2006.x mũ 2+ 2006.x mũ 1.
Tính f( 2005)
x=2005
nên x+1=2006
\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)
\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)
=x=2005
\(\left(7^{2005}+7^{2004}\right):7^{2004}=7^{2004}\left(7+1\right):7^{2004}=8\)