Tìm số nguyên a sao cho :
a) a-1 là ước của 15 (15 chia hết cho a-1)
b)2a-1 chia hết cho a-3
làm giúp mình nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n – 1 là ước của 15
n – 1 ∈ { 1; -1; 3; -3; 5; -5; 15; -15 }
n ∈ { 2; 0; 4; -2; 6; -4; 16; -14 }
b) Ta có: 2n – 1 = 2n – 6 + 5 = 2(n – 3) + 5 chia hết cho n – 3
Do đó: 5 chia hết cho n – 3. Nên n – 3 là ước của 5
n – 3 ∈ {1; -1; 5; -5}
n ∈ {4; 2; 8; -2}
Đáp án:
Giải thích các bước giải: a) x-5 ∈ Ư(6)={-1;1;-2;2;-3;3;-6;6} => x∈{4;6;3;7;2;8;-1;11} b) x-1∈ Ư(15)={-1;1;-3;3;-5;5;-15;15} => x∈ { 0;2;-2;4;-4;6;-14;16}
c) x+6 chia hết cho x+1 => x+1+5 chia hết cho x+1 => 5 chia hết cho x+1 (vì x+1 chia hết cho x+1) => x+1 ∈ Ư(5)={-1;1;-5;5} => x∈{ -2;0;-6;4}
cho và share nhé
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
a,Ta có : \(15⋮\left(n-1\right)\)\(\Rightarrow\left(n-1\right)\inƯ\left(15\right)\)
Mà \(Ư\left(15\right)=\left\{1;3;5;15\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;3;5;15\right\}\)
+,Nếu \(n-1=1\Rightarrow n=2\)
+,Nếu \(n-1=3\Rightarrow n=4\)
+,Nếu \(n-1=5\Rightarrow n=6\)
+,Nếu \(n-1=15\Rightarrow n=16\)
Vậy \(n=\left\{2;4;6;16\right\}\)
\(a,a+5⋮a-1\)
\(a-1+6⋮a-1\)
Vì \(a-1⋮a-1\)
\(6⋮a-1\)
\(\Rightarrow a-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Tự lập bảng ...
\(b,2a⋮a-1\)
\(2a-2+2⋮a-1\)
\(2\left(a-1\right)+2⋮a-1\)
Vì \(2\left(a-1\right)⋮a-1\)
\(2⋮a-1\)
\(\Rightarrow a-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Tự lập bảng ...
\(c,3a-8⋮a-4\)
tương tự phần b
cho em hỏi 302 x 16 + 302 x 4 người ta bảo tính thuận tiện nất em nghĩ mãi ko ra ♪
\(a)\) \((n-1)\varepsilonƯ(15)\) Gồm các phần tử : 1; 3; 5; 15
Xét \(n-1=1\) Xét \(n-1=3\) Xét \(n-1=5\) Xét \(n-1=15\)
\(n=1+1\) \(n=3+1\) \(n=5+1\) \(n=15+1\)
\(n=2\varepsilonℤ\) \(n=4\varepsilonℤ\) \(n=6\varepsilonℤ\) \(n=16\varepsilonℤ\)
Vậy n thuộc vào tập hợp : 2; 4; 6; 16
a) Ta có : n-1\(\in\)Ư(15)={-15;-5;-3;-1;1;3;5;15}
+) n-1=-15
n=-14 (thỏa mãn)
+) n-1=-5
n=-4 (thỏa mãn)
+) n-1=-3
n=-2 (thỏa mãn)
+) n-1=-1
n=0 (thỏa mãn)
+) n-1=1
n=2 (thỏa mãn)
+) n-1=3
n=4 (thỏa mãn)
+) n-1=5
n=6 (thỏa mãn)
+) n-1=15
n=16 (thỏa mãn)
Vậy n\(\in\){-14;-4;-2;0;2;4;6;16}
b) Ta có : 2n-1\(⋮\)n-3
\(\Rightarrow\)2n-6+5\(⋮\)n-1
\(\Rightarrow\)2(n-3)+5\(⋮\)n-1
Mà 2(n-3)\(⋮\)n-3
\(\Rightarrow\)5\(⋮\)n-3
\(\Rightarrow\)n-3\(\in\)Ư(5)={-5;-1;1;5}
+) n-3=-5
n=-2 (thỏa mãn)
+) n-3=-1
n=2 (thỏa mãn)
+) n-3=1
n=4 (thỏa mãn)
+) n-3=5
n=8 (thỏa mãn)
Vậy n\(\in\){-2;2;4;8}
Để 15 chia hết cho a-1 thì (a-1) thuộc Ư(15)={3,5,1,15,-1,-3,-5,-15} ( cũng có thể bỏ các số âm nếu bạn chưa học tới số âm)
a-1=1 => a=2
a-1=3 => a=4
a-1=5 => a=6
a-1=15 => a=16
a-1=-1 =>a=0
a-1=-3 =>a=-2
a-1=-5 => a=-4
a-1=-15 =>a=-14
b,2a-1 : a-3
2(a-3) +5 : a-3
vì 2(a-3) chia hết cho a-3 nên 5 cũng phải chia hết cho a-3
=> (a-3) thuộc Ư(5)={1,5,-1,-5}
a-3=1 => a =4
a-3=5 =>a=8
a-3=-1 => a=2
a-3=-5 => a=-2
\(15⋮a-1\Rightarrow a-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow a\in\left\{2;0;6;-4\right\}\)
Vậy.................................
\(2a-1⋮a-3\Rightarrow2\left(a-3\right)+5⋮a-3\)
\(\Rightarrow5⋮a-3\Rightarrow a-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow a\in\left\{4;2;8;-2\right\}\)
Vậy...........................