Tìm x,y biết
a) \(\frac{x}{11}=\frac{y}{7}\)
b) \(\frac{-x}{17}=\frac{-y}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)
=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)
b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)
c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
Có \(xyz=-528\)
\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)
\(\Leftrightarrow528\cdot k^3=-528\)
\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)
Với k=-1 thì : x=-8;y=-6;x=-11
a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)
\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)
=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)
c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528
=> k3 = -1 => k = -1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
Tìm các số x ; y ; z biết :
\(\frac{x}{7}=\frac{y}{11}\\ \frac{y}{9}=\frac{z}{12}\)
Và x - y - z = -17
Ta có \(\frac{x}{7}=\frac{y}{11};\frac{y}{9}=\frac{z}{12}\)
\(\Rightarrow\)\(\frac{x}{63}=\frac{y}{99};\frac{y}{99}=\frac{z}{132}\)
\(\Rightarrow\)\(\frac{x}{63}=\frac{y}{99}=\frac{z}{132}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{63}=\frac{y}{99}=\frac{z}{132}=\frac{x-y-z}{63-99-132}=\frac{-17}{-168}=\frac{17}{168}\)
\(\Rightarrow\)x=\(\frac{17}{168}\cdot7=\frac{17}{24}\)
\(\Rightarrow y=\frac{17}{168}\cdot99=\frac{561}{56}\)
\(\Rightarrow z=\frac{17}{168}\cdot12=\frac{17}{14}\)
\(\frac{x}{7}=\frac{y}{11}\Rightarrow\frac{x}{63}=\frac{y}{99}\left(1\right)\)
\(\frac{y}{9}=\frac{z}{12}\Rightarrow\frac{y}{99}=\frac{z}{132}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{63}=\frac{y}{99}=\frac{z}{132}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
........
a) Vì \(\frac{y-2}{15}=\frac{-2}{3}\)
=> ( y - 2 ) . 3 = ( - 2 ) . 15
=> ( y - 2 ) . 3 = -30
=> ( y - 2 ) = -30 : 3
=> ( y - 2 ) = -10
=> y = -10 + 2
=> y = -8
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
x+y=11
y=11-x
thay pt tren ta co
\(\frac{x-5}{11-x-7}=\frac{-12}{15}\)
\(\frac{x-5}{4-x}=\frac{-12}{15}\)
-12*(4-x)=15*(x-5)
12x-48=15x-75
3x=27
x=9
suy ra y=2
a) => x*7=y*11=>x/y=11/7=>x=11;y=7
b) tương tự như trên
x=-17;y=-15